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Abstract— This paper investigates the use of redundancy and self-

repairing against node failures in distributed storage systems using a 

novel non-MDS erasure code. In replication method, access to one 

replication node is adequate to reconstruct a lost node, while in MDS 

erasure coded systems which are optimal in terms of redundancy-

reliability tradeoff, a single node failure is repaired after recovering the 

entire stored data, thereby consuming more repair bandwidth. The 

current paper aims at investigating a new type of erasure codes with a 

reduced repair bandwidth as compared to conventional MDS erasure 

codes. Specifically, we propose a non-MDS  code that tolerates 

any three node failures and more importantly, it is shown using the 

proposed code a single node failure can be repaired through connecting 

to only three nodes which gives the ability to reduce the repair 

bandwidth comparing to MDS codes  
  

Index Terms— Distributed storage systems, Erasure code, MDS code.  

 

I. INTRODUCTION 

The field of large scale data storage systems has witnessed significant growth in recent years with 

applications such as social networks and file sharing. In storage systems, data should be stored over 

multiple independent nodes, i.e., disks, servers, peers, etc. In such systems, it may happen that a 

storage node has failed or leaves the system unexpectedly. In this case, it is widely recognized that the 

use of redundancy information can maintain a reliable storage capability over individually unreliable 

nodes. 

There are various strategies for distributing redundancy in which depending on the used method the 

system can tolerate a limited number of node failures. Moreover, the system should have the 

capability of self-repairing to keep the functionality of the system against node failures. To this end, 

each damaged node is replaced with a new node. Then, this newcomer should be connected to the 

existing nodes to download the same amount of data as the damaged node. Reconstructing a failed 

node and the maintenance bandwidth are called repair problem and repair bandwidth, respectively. 
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Fig. 1. The graphical representation of the proposed code. The recovery of original data file can be achieved by 

connecting to: (i) two nodes within a partition and  different nodes selected over   different partitions  

(solid-lines) or (ii)  parity nodes and  systematic nodes selected from  different partitions  

(dashed-lines are the specific case of  ). 

 

Erasure codes are the most common strategy for distributing redundancy across the network. An 

erasure coded system employs totally  packets of the same size,  of which are data packets (the 

fragments of the original data file) and  of which are parity packets (the parity information). It is 

worth mentioning that the process of coding can be done using either Maximum Distance Separable 

(MDS) or non-MDS codes. In a distributed storage system, these packets are stored at  different 

nodes across the network. MDS codes [1] are optimally space-efficient and the encoding process is 

such that having access to any  nodes is adequate to recover the original data file. In these codes, 

each parity node increases the fault tolerance. In other words, a  MDS coded system can tolerate 

any  node failures. 

Replication, RAID (Redundant Array of Independent Disks) 5, RAID 6 [2], and Reed-Solomon 

codes [3] are the most popular MDS codes that have been used in storage systems. In replication, the 

parity nodes and data nodes are the same. In other words, a replication of each data node is stored in a 

related parity node. RAID 5 and RAID 6 employ  and  parity node(s), 

respectively. However, Reed-Solomon codes can be designed for any value of  MDS codes [3]. 

Another class of MDS codes are MDS array codes such as EVENODD codes [4]. These codes are 

based on XOR operation and have lower encoding and decoding complexity than conventional Reed-

Solomon codes. 

Non-MDS codes are introduced to reduce the computational complexity of encoding and decoding 

processes over lossy networks; however, are not as space-efficient as MDS codes. These codes are 

investigated in several papers. As a case in point, Hafner in [5] proposes a new class of non-MDS 

XOR-based codes, called WEAVER codes. The WEAVER codes are vertical codes which can 

tolerate up to 12 node failures. In a vertical code like X-code and WEAVER code each node contains 

both data and parity packets. In contrast, each node in a flat-XOR code such as EVENODD, holds 
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either data or parity packets. Greenan et al. In [6] describe construction of two novel flat XOR-based 

codes, called stepped combination and HD-combination codes. 

The standard MDS codes are inefficient in terms of repair bandwidth as reconstructing a failed 

node consumes a repair bandwidth equal to the entire stored data. This motivated Dimakis et al. In [7] 

to propose a new type of codes, called regenerating codes (RC), which basically make a balance 

between the repair bandwidth and the storage capacity per node. The repair model presented in [7] is a 

functional repair. In the functional repair model the recreated packets stored at the replaced node can 

be different with the lost packets. This is in contrast to the exact repair in which each lost packet is 

exactly reconstructed. The exact repair problem for RCs is investigated in [8]. Also other variants of 

RCs are introduced in [9], [10]. 

Regenerating codes outperform existing MDS erasure codes in terms of maintenance bandwidth, 

however, constructing a new packet requires communication with  nodes and the minimum 

repair bandwidth can be achieved when . In addition, the surviving nodes have to apply a 

random linear network coding to their stored packets. Accordingly, many of the proposed 

constructions require a huge finite-field size which are not feasible for practical storage systems. The 

current study aims to introduce a  non-MDS XOR-based code which can tolerate any 

three node failures. Accordingly, it is shown a single node failure can be exactly repaired through 

access to only three nodes regardless of  . 

The rest of paper is organized as follows: Section II gives the construction steps following the 

main idea behind the proposed code. In Section III, we explain the repair problem of the proposed 

code. Finally, Section IV concludes the paper. 

II. CONSTRUCTION  

In this section we describe the construction of the proposed non-MDS code. Fig. (1) shows a 

graphical representation of this code. This code is a class of flat XOR-codes which contains  

storage nodes where each node stores one packet. The construction is such that  out of  existing 

nodes i.e., , hold data fragments, called systematic nodes. The remaining  nodes, 

i.e., , are the parity nodes which store parity packets. Also it is assumed that each systematic 

node  has a related parity node  in which they form a same partition. Thus, with this 

construction, the code entails  partitions. 

For storing a file of size  using this construction, the file is divided into  fragments i.e., 

, each of size . The data stored in each parity node of a given partition is simply the 

XOR of data fragments from other  partitions. 

Each fragment can be a single bit or a block of bits. These fragments are stored at $k$ systematic 

nodes. Fig. (2) illustrates an  code corresponding to the explained construction. 
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Referring to Fig. (2), the five data fragments, i.e.,  and , are stored at nodes 

 and  respectively. Also, the parity packet  to be stored in parity node  is computed 

as 

where addition here is bit-by-bit XOR of two data packets. For instance in a (10,5) code, as can be 

inferred from Fig. (2), parity packets , , 

,  and  are stored in parity 

nodes  and  respectively. It is worth mentioning that for the specific case of  this 

code is same as the replication code. Also for , the parity packets are same with the parity 

packets of the proposed chain code in [6]. 

Now we are ready to discuss how the recovery of the original file can be made. It is assumed 

corresponding to a request to reconstructing the original data file a Data Collector (DC) is initiated 

and connects to existing nodes. Since, each node stores a data size , thus a DC needs to connect to at 

least  out of existing nodes to reconstruct the original data file of size . Recall that the proposed 

construction in this work does not have the MDS property. As a result, having access to any  nodes 

out of existing  nodes does not ensure restoring the original file. However, we will argue that a DC 

can wisely select  out of existing  nodes to construct the whole data file. To this end, DC has 

actually two possible choices for selecting  storage nodes to connect to. First, a DC can connect to a 

systematic node and parity node of the same partition and select  different nodes from   

different partitions out of the remaining  partitions (solid-lines in Fig. (1) are a special case of 

this scenario). Noting there are  options for selecting  out of existing  partitions,  

options to select a systematic-parity pair from  selected partitions, and  options for selecting 

either of systematic or parity nodes of the remaining  partitions, thus a DC has totaly 

 options to choose  nodes to connect to. In the second scenario, a 

DC can connect to  parity nodes and  systematic nodes selected from  different 

partitions (dashed-lines in Fig. (1) can be considered as a special case of this scenario when ). 

In this case, the number of ways to choose  nodes is computed as  . Thus, adding 

the possible choices of two scenarios, there are totally  ways to recover the original 

file using  nodes. Considering the two possible scenarios, we need to have at least  available 

partitions (having access to either of systematic or parity node is adequate for the remaining 

partitions) to reconstruct the original data file. Since, each systematic node and its related parity node 

constitutes a partition, the proposed  code can tolerate up to three node failures in general. 

 
     (1) 
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However, this code can tolerate up to  node failures as long as the failed nodes are from  

different partitions. 

As is mentioned earlier, the storage capacity per node for storing a file of size  is  which is 

similar to the storage capacity of a standard MDS code as well as that of the Minimum Storage 

Regenerating (MSR) codes
1
. Although MSR and conventional MDS codes offer higher degrees of 

freedom for reconstructing the original data file, we will show that the repair bandwidth of the 

proposed method outperforms the aforementioned coding strategies. Recall that to keep the reliability 

of network across time, each failed node should be repaired. In MDS codes, a failure is fixed after 

transferring the whole data file over the network (the repair bandwidth is equal to  and the repair 

problem is done through connecting the new node to  existing nodes). On the other hand, 

regenerating codes can further reduce the repair bandwidth if we allow the new node to connect to 

 nodes. Our proposed code, however, has the ability to do this through connecting to  

nodes, which is an advantage as compared to regenerating codes. In other words, fewer nodes are 

involved through the course of downloading. The following section aims at addressing the repair 

model of the suggested code. 

III. REPAIR PROBLEM 

Note that when a node fails or leaves the system a new node is initiated, attempting to connect to 

existing nodes to reconstruct the failed node (exact repair problem). In this case, two scenarios may 

occur: (i) The parity or systematic node in the same partition as the damaged node (the neighboring 

node) is active, or (ii) The neighboring node has failed. In the presence of neighboring node, the failed 

node can be reconstructed thorough communicating to only three nodes i.e., the neighboring node and 

the parity and the systematic nodes from another active partition. In fact, there are  ways to 

repair a failed node through downloading from the aforementioned three nodes. For example, 

referring to Fig. (2), we assume that the systematic node  which holds data fragment  is failed. 

When parity node  which stores parity packet  is active, the new node can 

restore  through downloading three packets in one of the following  ways, 

  

  

  

  

                                                 
1
.
The identified tradeoff curve in [7] has two extremal points; one end of this curve corresponds to the minimum storage per node and 

the other end corresponds to minimum bandwidth point. These two extremal points can be achieved by the use of the MSR and Minimum 

Bandwidth Regenerating (MBR) codes, respectively.
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which leads to have a repair bandwidth equal to . As discussed earlier, in MSR codes the new node 

should connect  nodes to ensure reconstructing a failed node. In these codes the repair 

bandwidth is computed as  which is a decreasing function with respect to  [7] and, hence, 

when new node connects to the minimum possible nodes, i.e.,  nodes, the repair bandwidth takes its 

maximum value, that is . For instance, in a  code, the repair bandwidth  can 

be achieved if new node connects to  nodes which are greater than  nodes in the proposed 

scheme. 

In the second scenario, when the neighboring node is not available, one of the following  strategies 

can be used to reconstruct the failed node. In the first strategy, dubbed strategy A, the parity node is 

first repaired and then using it the neighboring systematic node is repaired. In this case, the new parity 

node should connect to  parity nodes and  systematic nodes from  different 

partitions. This results in  ways to choose  nodes to connect to. For instance, 

referring to Fig. (2), for a  non-MDS code there are  ways in which the new 

node can use 0, 2 or 4 parity nodes to repair parity node  which stores  

without the use of node . These eight ways are as follows, 

  

  

  

  

  

  

  

  

  

In the second strategy, called strategy B, the failed systematic node is first repaired and then is used in 

the reconstruction of the neighboring parity node. To this end, the new systematic node requires to 

communicate with  parity nodes and  systematic nodes from  different partitions, 

thus the number of possible ways to do this can be computed as . For example, 

as is shown in Fig. (2), there exist  options for the new node to choose one or three parity 

nodes for repairing  the systematic node  which holds  when  is simultaneously failed and 

is not accessible. These options are as follows 
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In the aforementioned strategies A and B,  nodes are involved during the course of 

reconstruction of the first node, i.e., the parity node for strategy A and the systematic node for strategy 

B. Then, this node together with two other nodes is being used to reconstruct the neighboring node. 

Therefore, a repair bandwidth of size  is consumed to repair two failed nodes 

from the same partition. In fact, the average repair bandwidth for reconstructing each node is  . 

As an example, referring to Fig. (2), in the proposed non-MDS  code, when two nodes 

containing packets  and  simultaneously fails, 7 nodes are totally involved for 

reconstructing the failed nodes, meaning 3.5 nodes per packet are involved, thereby consuming a 

repair bandwidth of size  (  for each packet). Recall that in a MSR(10,5) code, a new node is 

allowed to connect to at least five nodes which leads to a repair bandwidth of size  per each failed 

node. 

As is mentioned earlier, there are two possible choices to reconstruct a failed node. First, the new 

node can connect to $k-1$ nodes from other partitions, or it can connect to its neighboring node 

together with two nodes from other partitions. Thus, for two specific cases of  and , the 

reconstruction of a lost packet through connecting to  nodes is more efficient than the second 

method, i.e., connecting to three nodes including the neighboring node, since in this case  is 

smaller than . 

Finally, it should be noted in the proposed non-MDS(2k,k) code, the total storage size needed to 

store a file of size  is  which is independent of . On the other hand, the repair bandwidth is 

shown to decrease as  increases. As a result, for a given total storage capacity, there is a tradeoff 

between the repair bandwidth and the number of storage nodes, i.e., . Moreover, the number of 

nodes which are involved during the course of repairing a single failure is shown to be at most three. 
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Fig. 2. The repair problem of a   code. The lost packet  can be repaired by the use of three packets 

including its related parity packet i.e, . Also when  has failed  can be 

 reconstructed by the use of four nodes from another partitions. 

IV. CONCLUSION 

A novel non-MDS code for storage systems is proposed which is shown is able to simultaneously 

tolerate any three node failures. Also, it can tolerate any  node failures if no more than two 

failed nodes are from the same partition. Moreover, each single node failure can be repaired through 

connecting to just three nodes. On the other hand, it is shown the proposed code achieves lower repair 

bandwidth as compared to MSR codes when there is a restriction on the number of surviving nodes. 

Finally, the suggested code has a simple structure as each node merely stores one packet and the 

recovery of the original data file as well as reconstruction a lost packet can be achieved by applying a 

simple XOR operation on the stored packets. 
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