
Journal of Communication Engineering, Vol. 3, No. 2, July-Dec. 2014 

 

 
Manuscript received 25-May-2014  and  revised 29-July-2014,                                                                                      P- ISSN: 2322-4088 

Accepted on 18- August-2  E- ISSN: 2322-3936 
 

95 

Abstract— In this paper, we study the impact of low-quality node on the 

performance of incremental least mean square (ILMS) adaptive 

networks. Adaptive networks involve many nodes with adaptation and 

learning capabilities. Low-quality mode in the performance of a node in 

a practical sensor network is modeled by the observation of pure noise 

(its observation noise) that leads to an unreliable measurement. 

Specifically, we consider ILMS networks with different number of low-

quality nodes and compare their performance in two different cases 

including (i) ideal and (ii) noisy links in homogeneous and 

inhomogeneous environments. We show that in the case of ideal links 

among nodes, one node with low-quality mode degrades the estimation 

performance significantly and increasing the  variance of observation 

noise does not degrade the performance anymore. Even with increasing 

node numbers with low-quality mode in network, estimation 

performance does not divergence. On the other hand, in the presence of 

noisy links, different behavior is observed and degradation is dependent 

on variance of noisy links and it may go unstable. Simulation results are 

provided to illustrate the discussions.  
  

Index Terms— Adaptive network, incremental cooperation, LMS algorithm, mean 

square deviation (MSD).  

 

I. INTRODUCTION 

A wireless sensor network consists of a definite number of sensor nodes distributed over a 

geographical area. These sensors (nodes) are self-powered and in some cases comprise a local 

computing mechanism. Distributed estimation problem arises in many applications where a set of 

nodes are used to estimate a parameter of interest by the data collected at nodes. This problem has 

first been studied in the context of distributed control, tracking, data fusion [1]-[3], and recently in 

wireless sensor networks [4]-[5]. A sensor node is a tiny device that includes three essential 

components: a sensing subsystem for data acquisition from the physical surrounding environment, a 

processing subsystem for local data processing and storage, and a wireless communication subsystem 

for data transmission [6]. The estimation problem can be solved by either a centralized or a 

decentralized approach [7]. In a centralized approach, measurements from all nodes are collected and 
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processed by a fusion center. This scheme requires extensive amounts of communication between the 

nodes and the processor. These issues, along with geographical difficulties limit the use of fusion-

based solutions. An alternative way is the decentralized solution where the nodes rely solely on their 

local data and on interactions with their immediate neighbors. The amount of processing and 

communications is significantly reduced in this scheme [8]. In most of these applications, the 

statistical information about the process of interest is not available or it varies over the time. The 

adaptive networks have been introduced in the literature to solve the distributed estimation problem in 

such cases along with response capability to excitations and tracking [9]-[15]. Having real time 

response also requires that the nodes must be working continuously whether there is an observation or 

not. The existing distributed adaptive networks can be roughly classified, based on the cooperation 

mode between the nodes, into incremental [9]-[12], diffusion [13]-[14] and consensus [15]-[16] 

algorithms. Our focus in this work is on incremental LMS adaptive networks where at each iteration, 

each node receives the prior node’s local estimate, updates its local data using LMS algorithm, and 

finally sends it to the next node with assuming ideal links between nodes [10, 17]. However, in [18], 

the performance of incremental adaptive network differs considerably in the presence of noisy links. 

Beside the incremental LMS and RLS, incremental techniques based on the affine projection 

algorithm, parallel projections, and randomized incremental protocols are the other examples of 

incremental adaptive networks [11, 19, 20]. The incremental solution suffers from a number of 

limitations for applications involving adaptation and learning from streaming data [20]. First, the 

incremental strategy is sensitive to agent or link failures. If an agent or link over the cyclic path fails, 

then the information flow over the network is interrupted. Second, starting from an arbitrary topology, 

determining a cyclic path that visits all agents is generally an NP-hard problem. Third, cooperation 

between agents is limited to an agent which it is allowed to receive data from one preceding agent and 

to share data with the proceeding one. In addition, processing at the agents needs to be fast enough so 

that the N update steps can be completed before the next cycle begins. However, this mode of 

cooperation requires the least amount of communication and power and is also suitable for small-size 

networks besides offering excellent estimation performance [10]. Another aspect that deserves 

attention in the distributed algorithms analysis is the case where the observation in each node in the 

network does not provide the same reliability regarding the estimation of the unknown parameter [27]. 

In this situation, the estimate provided by the noisy nodes, i.e., the nodes that provide the least reliable 

parameter estimation, tends to deteriorate the global estimate in the network. This heterogeneous 

scenario in a WSN can arrive in many situations. For instance, the spectrum sensing in a cognitive 

radio network in which the channel between each radio and the common primary user presents a 

different signal-to-noise ratio is an example of such situation [24]. In this case, the noisy cognitive 

radios would deteriorate the network global estimate. A possible solution to overcome this problem is 

to provide an adaptive cooperative scheme as in [25] or to use a variable step size LMS as proposed in 
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[26].As mentioned before, in a realistic sensor network, a sensor may be damaged or attacked, making 

its measurement unreliable. If this happens, the sensor will only observe the pure noise (observation 

noise) and may be degrade the estimation performance. We refer to this event as low-quality mode of 

node and investigate the performance of MSD for this issue. 

This article is organized as follows: the problem of distributed parameter estimation and incremental 

solution are explained in Section 2. In Section 3, the effect of low-quality mode is modeled and 

discussed. Subsequently, Section 4 shows simulation results and the effect of number of nodes with 

low-quality mode on the accuracy of parameter estimation over network. Finally, conclusions are 

provided in Section 5. 

Notation: Throughout the paper, we use boldface letters for random quantities. The * symbol is used 

for both complex conjugation for scalars and Hermitian transpose for matrices.  

II. DISTRIBUTED ESTIMATION AND INCREMENTAL SOLUTION 

Consider a network with N nodes. At time i > 0, node k obtains scalar measurement dk (i ) and 

regression vector uk,i (1×M) which are the time-realizations of zero mean jointly wide-sense stationary 

spatial data {dk , uk }. These quantities are related via: 

0

,( ) ( ), k 1,2,..., Nk k i ki w i  d u v   

where M×1 vector 
0w  is an  unknown parameter and vk (i ) is the observation noise term with 

variance 
2
,v k  .  The purpose of the network is to estimate

0w  from measurements collected from N 

nodes. Note that 
0w is the solution of the following optimization problem: 

2

,

1 1

min ( ) ( ) (network objective),E
N N

k k k i

k k

J w i w
 

   d u   

where E denotes the statistical expectation. The optimal solution of (1) satisfies the normal equations 

[9,10]: 

0 1

u duw R R   

Where  

 
* *

, ,

1 1

{ }, { }
N

du k k k u k k k

k k

R E R E
 

  u d u u   

In order to use (4) each node must have access to the global statistical information, which in many 

applications are not available or change in time and since the optimization problem involves 

decoupled cost functions as Jk(w) = E{|dk−ukw|
2
}, the incremental methods can be used to seek the 

solution in a distributed approach. In [9,10] the DILMS is proposed to address the mentioned 

problems: 

(4) 

(1) 

(2) 

(3) 
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Fig. 1. A schematic of DILMS algorithm 
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Where 
i

k denotes the local estimate of w
o
 at node k at time i and k is the step size. In the 

incremental LMS algorithm, the estimated values (i.e . 
i

k ) are sequentially circulated from node to 

node as shown in Fig. 1. Assumptions on the statistical properties of the data are as follows: the 

regression data uk,i are temporally and spatially independent and identically distributed (i.i.d.) circular 

white Gaussian random variables with zero mean and diagonal covariance matrix λIM. The noise 

signals vk (i) are independent of dL(i ), uL,j for all L ,j.  

The given algorithm in (5), utilizes both spatial and temporal dimensions of the data. In [10], the 

mean-square performance of DILMS is studied using energy conservation arguments. In mean-square 

analysis, we are interested in evaluating the steady-state values of mean-square deviation (MSD), for 

every node k. This quantity is defined as follows: 

2

1( )k k  
    

where 

0
1 1

i i
k kw      

The analysis relies on the linear model (1) and the following assumptions: 

(i) { uk,i} are spatially and temporally independent. 

(7) 

(6) 

(5) 
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(ii) The regressors {uk,i} arise from a circular Gaussian distribution with covariance matrix 

Ru,k. 

In [9], a complex closed-form expression for MSD has been derived. However, in the case of small 

step sizes, simplified expressions for the MSD can be described as follows: for each node k, an eigen 

decomposition is introduced as
*

,u k k k kR U U   , where Uk and k  are unitary and  diagonal matrices 

of the eigenvalues of Ru,k. 

,1 ,2 ,{ , ,..., },( )k k k k Mdiag node k     

Then, according to the results from [10] we have: 

 

2 2

, ,

1

1
,

1

1
( )

2

N

l v l l jM
l

k N
j

l l j

l

  



 













  

Also, in [18] the performance of incremental least mean square adaptive networks was discussed in a 

more realistic case in which communication links between nodes are considered noisy. In the presence 

of noisy links the update equation for DILMS changes to: 

 
Nkwith

w

quiduq
i

Ni

ik

i

kikkikkik

i

k

i

k ,....,1
)()( ,1,

*
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




 




                            (10) 

Where the M ×1 vector ,k iq  is the channel noise term between nodes k-1 and k. Also, ,k iq  is a time-

realization of wide-sense stationary random process ,k iq  which is assumed to be zero mean with 

covariance matrix
*[q q ]k k kQ E . Again, by the assumption of constant and small step size and,                               

Mkck IQ 2

,  ,  Mku IR ,   the approximation of MSD can be derived as follows: 
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III.  LOW-QUALITY MODEL 

In a practical sensor network, a sensor may be damaged or attacked, making its measurement 

unreliable and does not have any information about w
0
. If this happens, the sensor will only observe 

the pure noise and certainly degrade the estimation performance [22]. We refer to this phenomenon as 

low-quality mode of node. This is simulated by data model (12). Two ways of low-quality node is 

studied, namely random and intentional removal (according to SNR).  

(8) 

(9) 

(11) 
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Fig. 2. A schematic of DILMS algorithm with 2 nodes 

 

 

 

 

 

 

The mean stability analysis aims to find out the sufficient conditions such that the local estimation at 

each node converges in the mean to the unknown parameter w
o
.  

So we refer to the two nodes as nodes 1 and 2. Node 1 is assumed to measure data that satisfy a linear 

regression model of the form and node 2 only observe the pure noise (its observation noise): 
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For node2, and with assumption small enough step size , we have: 

*
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Now, Let’s consider global error vector as: 

0i i

k kw     

Using model (12) and Supposing that the regressors {uk,i} are spatially and temporally independent, 

along with taking expectation value of both sides of (13), we find that the mean relation of 
i
k   

evolves in time according to the recursion as follows: 

0[ ]i

kE w I R     

This condition ensures mean stability, as i → ∞, and again with assumption of enough step size even 

in the presence nodes with faults is guaranteed. This condition is also right for noisy links with 

assuming mean of noisy links are zero. The value of this degradation can be achieved with energy 

conservation method [10]. 
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Fig. 3. Network topology (top), noise variances 
2
,v k   (bottom, left) and trace of regressor  covariances Tr(Ru,k) 

 (bottom, right) for N = 10 nodes. 

IV. SIMULATIONS RESULTS 

We present a simulation example for the distributed incremental LMS algorithms with ideal links in 

Figs. 3–6, for a network with 10 nodes. The regressors are zero-mean complex Gaussian, independent 

of time and space, of size M=5 and with covariance matrices Ru,k. The background noise power is 

denoted by
2
,v k  . Fig. 3 shows 

2
,v k   and Tr(Ru,k ) for each node. The results are averaged over 100 

independent experiments using a step-size μ=.01. Figs. 4-5 show the MSD transient network when 

two condition (i) homogeneous environment that all of the nodes have same observation noise that are 

equal .02 and (ii) inhomogeneous environment  that observation noise is as shown in Fig.3(bottom 

left) . As it shows, with one low-quality node the performance of the network decreases significantly 

and this value is more in inhomogeneous network. Note that this low-quality node is chosen 

randomly. Also, it is resulted for other choices of low-quality node according to the defined SNR 

values in [23] and observed that MSD value doesn't change and is shown in Fig.6. For investigating 

how the value of power noise affects degradation, we simulate default network with different values 

for homogeneous and inhomogeneous condition. As Figs. 7-8 show, the values of MSD in different 

values of noise variance. is approximately constant in both homogeneous and inhomogeneous  
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Fig. 4. Transient network MSD for usual (blue) and one node is low-quality mode (red) incremental LMS in homogeneous 

environment. 

 

 

 
 

Fig. 5. Transient network MSD for usual (blue) and one node is low-quality mode (red) incremental LMS  

in inhomogeneous environment. 
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Fig. 6. Transient network MSD for usual and choose one low-quality node according their SNRs. 

 

 

 
 

Fig. 7. Steady state of MSD for usual and one low-quality node incremental LMS in different homogeneous environment.  
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Fig. 8. Steady state of MSD for usual and one node with low-quality incremental LMS in different inhomogeneous 

environment.  

 
Fig. 9. Steady state of MSD for usual and different low-quality nodes incremental LMS in inhomogeneous environment.  

 

 
Fig. 10. Steady state of MSD for usual and different low-quality nodes incremental LMS in inhomogeneous environment 

for different step sizes.  
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Fig. 11. Transient network MSD for usual (blue) and one node is low-quality mode (red) incremental LMS with noisy 

links Q=10-5I in inhomogeneous environment. 

 
Fig. 12. MSD for usual and one low-quality node for incremental LMS with different noisy links in inhomogeneous 

environment. 

 
Fig. 13. Steady state of MSD for usual and different low-quality nodes incremental LMS in inhomogeneous environment.  
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V. CONCLUSION 

In a realistic sensor network, a sensor may be damaged or attacked, making its measurement 

unreliable. If this happens, the sensor will only observe the pure noise (modeled by its observation 

noise) and degrade the estimation performance. We refer to this event as low-quality mode of node. In 

applications where node deployment is controlled, incremental strategies are applicable since they can 

achieve better performance than diffusion. We considered two different cases, including the ideal and 

noisy links in homogeneous and inhomogeneous environments. Our results exposed that when the 

links are ideal, one node failure in the network deteriorates the network’s learning and estimation 

performance and this degradation does not depend on the value of observation nodes. As to noisy 

links condition, the performance estimation depends on variance of channel noise and with increasing 

this value performance of MSD may become worse and divergent. Also, it was revealed that by 

increasing the number of low-quality nodes, the variation in the percentage of degradation in MSD for 

each additional node in ideal links is approximately steady and as long as there is at least one properly 

working node the system will function reliably. Also step size choices are studied and it is concluded 

that in small step sizes the system is less open to performance degradation caused by increased 

number of low-quality nodes. On the other hand, for the case of noisy links with a noise level of 

below some threshold we show that the trend of performance degradation is rapidly increasing one 

with the number of failed nodes. It should also be noted that link noise of enough intensity can drive 

the system unstable even in low numbers of low-quality nodes. 
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