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Abstract—In this paper we focus on the tracking performance of 

incremental adaptive LMS algorithm in an adaptive network. For this 

reason we consider the unknown weight vector to be a time varying 

sequence. First we analyze the performance of network in tracking a 

time varying weight vector and then we explain the estimation of 

Rayleigh fading channel through a random walk model. Closed-form 

relations are derived for mean square error (MSE), mean square 

deviation (MSD) and excess mean square error (EMSE)of analyzed 

network in tracking Rayleigh fading channel and random walk model. 

Comparison between theoretical and simulation results shows a perfect 

match and verifies performed calculations.   

 
 

Index Terms—Distributed estimation, incremental strategies, non-stationary 

environment, Rayleigh fading. 

 

I. INTRODUCTION 

Wireless sensor networks are useful tools for a variety of tasks from environment monitoring to 

spectrum sensing [1-7]. 

Up until now there has been an excessive research on the topic of the performance of adaptive 

wireless sensor networks in different environmental conditions like extra noise addition, link failures 

and fading effects. All kinds of transient and steady-state behaviors of different consensus strategies 

have been analyzed and proposed in several papers [1, 2], but in all of these papers the main 

assumption about the usage of network is that the network is designed to estimate a stationary entity. 

So what if we want to use the network to track a non-stationary variable? As stated in [1], consensus 

strategies are more capable in improving the performance of adaptive estimation than any other 

variations. In short we can understand that group estimation has a better result than singular case. This 

ability can be used in tracking a non-stationary entity. In this paper we address this issue and propose 

some usages for the tracking with an adaptive wireless sensor network. 
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Fading channel estimation and object tracking can be the main examples of tracking a non-stationary 

variable. Here we considered the first application namely fading channel tracking. The reader should 

be aware that this criterion is different from estimating a stationary variable in a fading channel. Here 

our goal is to track a non-stationary variable in a stationary environment. This environment is subject 

as usual to white Gaussian noise but not fading. Even we can expand this case to the case where our 

environment is subjected to fading itself. Here we will overview the topic of discussion in some recent 

papers: 

In [4] the tracking performance is mentioned and some attempt is made to reach closed-form 

expressions for MSD of a diffusion strategy in non-stationary environment, but in simulation part no 

relations is mentioned about the relevance of simulated scenario and calculated theoretical results. 

Furthermore no matching diagram is given to support the arrived simulation and theoretical results 

which is a verification of the accuracy of results.  

In [5] following the scheme of [4], tracking performance of a variable step-size diffusion LMS 

algorithm is considered in non-stationary environment, but this time no attempt is made to arrive to a 

closed-form expression of MSD or MSE of the network and consequently no matching is performed 

in between simulation and theoretical results.   

The authors of [6] assumed that the fading coefficients of the network are known to us and therefore 

we can adjust combination parameters in a way to mitigate deep fading transitions.  This is true when 

you estimate fading channel coefficients in advance and for this problem we can use our network to 

track the changing fading conditions. Also in [6] no closed-form relations are given for this scenario. 

Finally in reference [3] theoretical results are given for performance of Distributed Incremental LMS 

(DILMS) algorithm in a non-stationary environment. But in simulation part the performance result of 

IDLMS algorithm is presented in tracking a time varying auto regressive (TVAR) sequence and 

consequently the results are matched without a relevance to Random-walk model.  

In this paper we match the Rayleigh channel estimation problem with Random-walk model for non-

stationary environments and consider several models for changing and drifting unknown weights. In 

this situation we compare the MSD and EMSE of simulations with theoretical results directly. 

This paper consists of the following parts: in part II we will have a brief overview of incremental 

adaptive estimation of a stationary data in distributed sensor networks and then we will start to 

develop non-stationary data model. In part III we study the tracking performance of IDLMS algorithm 

and overview the derivation of theoretical Steady-state performance results. In part IV we present our 

simulation examples for tracking of time varying weights and Rayleigh fading channel estimation. 

Part V contains our concluding remarks and suggestions for future works.    
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TABLE I. USED SYMBOLS AND THEIR DESCRIPTION 

Symbol description 

(. )𝑇 Transposition 

𝔼(𝑎) Statistical expectation of 𝑎 

(. )∗ Conjugation for scalars and Hermitian transpose 

for matrixes 

‖𝑥‖Σ
2 𝑥∗Σ𝑥 for a column vector x 

Tr[A] Trace of matrix A 

 

Notation: In this paper as in [1] and [2], we used bold faced letters for random quantities and plain 

text letters for deterministic quantities. Upper case letters are also used for matrixes. Symbols which 

are used in this paper are explained in TABLE I: 

II. DISTRIBUTED ESTIMATION 

Following the procedure in [1], we will consider a network of N nodes distributed in an area (Fig.1). 

If we take k as sensor index, each node has access to time realizations {𝑑𝑘(𝑖), 𝑢𝑘,𝑖} of {𝒅𝑘(𝑖), 𝒖𝑘,𝑖} 

measurements. For each sensor 𝒅𝑘 is a scalar quantity and , 𝒖𝑘 is a 1 × 𝑀 vector. The data model for 

stationary case represents the relation between these measurements through a linear equation [1]: 

     𝒅𝑘(𝑖) = 𝒖𝑘,𝑖𝑤𝑜 + 𝒗𝑘(𝑖)        (1) 

Where 𝑤𝑜 is the desired unknown vector and 𝒗𝑘(𝑖) is white noise with variance 𝜎𝑣,𝑘
2 . Same 

independence assumptions are taken into consideration as in [1]. In stationary case the objective of the 

adaptive network is to estimate desired deterministic vector  𝑤𝑜 through minimizing the mean square 

error [3]: 

     𝑤𝑜 = argmin
𝑤

1

𝑁
∑ 𝔼|𝒅𝑘 − 𝒖𝑘𝑤|2𝑁

𝑘=1        (2) 

The optimal weight is then [2]: 

     𝑤𝑜 = (∑ 𝑅𝑢,𝑘
𝑁
𝑘=1 )

−1
(∑ 𝑅𝑑𝑢,𝑘

𝑁
𝑘=1 )       (3) 

Where 𝑅𝑢,𝑘 = 𝔼(𝒖𝑘
∗ 𝒖𝑘) and 𝑅𝑑𝑢,𝑘 = 𝔼(𝒅𝑘𝒖𝑘

∗ ) are correlation terms. 

A. Distributed Incremental LMS (DILMS) estimation 

As mentioned before based on the cooperation strategy between nodes we have two main choices: 

Incremental and Diffusion strategies. In this paper we will analyze the tracking performance in the 

incremental mode. In incremental strategy each node only has communication with its immediate 

neighbors [1]. This makes Incremental strategy more cost efficient based on computational  
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Fig.1. A distributed network with (N) active nodes and incremental mode of cooperation 

complexity. 

The complexity study is never considered fully in distributed adaptive strategies. Although we can 

give precise calculation amount for adaptive algorithms, when it comes to the collaborative work of 

20 or more sensor nodes, the tracking of computational cost is a formidable task. In reference [1] it is 

mentioned that for IDLMS algorithm, if the length of unknown vector is taken to be (𝑀) we need 

𝑂(𝑀) (order of M) computations per node and 𝑂(𝑀) transmissions per node. For our simulations 

𝑀 = 4 𝑎𝑛𝑑 8. It is also claimed in [1] that for other similar algorithms, for each node 𝑂(𝑀3) 

computational complexity and 𝑂(𝑀2) transmission is needed. For example in diffusion LMS 

algorithm, the transmission between nodes is more than IDLMS algorithm because each node has 

communications with more than one neighboring node. 

In this strategy each node shares local estimation of desired vector namely 𝝍𝑘,𝑖 with its immediate 

neighbor and plays as the initial estimation for the next node. The IDLMS algorithm is given as [1]: 

For each time 𝑖 ≥ 0 repeat: 

{

𝝍0,𝑖 = 𝒘𝑖−1initial guess

𝝍𝑘,𝑖 = 𝝍𝑘−1,𝑖 − 𝜇𝑘𝑢𝑘,𝑖
∗ (𝑑𝑘(𝑖) − 𝑢𝑘,𝑖𝜓𝑘−1,𝑖 ), 𝑘 = 1, … , 𝑛  

𝒘𝑖 = 𝝍𝑛,𝑖 at node 𝑁                                             

      (4) 

B. Non-stationary environment 

       
Different papers proposed different modes for non-stationary environments. In [4] and [5] the 

proposed time varying vector of length 8 (or 𝑀 = 8) is defined as: 

     𝒘𝑖
𝑜 =

1

2
[𝑎1,𝑖, 𝑎2,𝑖, 𝑎3,𝑖, 𝑎4,𝑖]

𝑇
        (5) 

Where 𝑎𝑘,𝑖 = [𝑐𝑜𝑠 (𝜔𝑖 +
(𝑘−1)𝜋

2
) , 𝑠𝑖𝑛 (𝜔𝑖 +

(𝑘−1)𝜋

2
)] for 𝑘 = 1,2,3,4 and 𝜔 =

𝜋

3000
. Also in [3] a 

time varying auto regressive (TVAR) model is proposed for defining non-stationary environment.  

In this paper we propose a much realistic mode for non-stationary environment. Here we assume 

that our unknown weight vector takes root from a Rayleigh fading channel. In this case the objective 

of the sensor network is to track and estimate the time varying channel coefficients. Rayleigh fading  
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Fig.2. Zero-order Bessel function 

 

channel assumption can be changed by other channel modes but due to the simplicity of calculations 

and following the procedure in [8] we have the channel coefficients as: 

     ℎ(𝑛) = 𝛾𝑥(𝑛)𝛿(𝑛 − 𝑛0)        (6) 

Where 𝛾 is path loss and 𝑛0 is the channel delay. 𝑥(𝑛)is a time varying sequence and its amplitude 

|𝑥(𝑛)| is assumed to have Rayleigh distribution as follows[7]: 

   𝑓|𝑥(𝑛)|(|𝑥(𝑛)|) = |𝑥(𝑛)|𝑒
−|𝑥(𝑛)|2

2
⁄  ,       |𝑥(𝑛)| ≥ 0       (7) 

The phase of this distribution is uniformly distributed within [−𝜋, 𝜋]. The auto-correlation of the 

sequence 𝑥(𝑛) is modeled as zeroth-order Bessel function: 

   𝑟(𝑘) =  𝔼[𝑥(𝑛)𝑥(𝑛 − 𝑘)] = 𝒥0(2𝜋𝑓𝐷𝑇𝑠𝑘),        𝑘 = ⋯ , −1,0,1, …     (8) 

Where 𝑓𝐷 is the Doppler frequency, 𝑇𝑠 is the sampling period and 𝒥0(. ) is the Bessel function that is 

shown in Fig. 2. A first order approximation for the variation of a Rayleigh fading coefficient 𝑥(𝑛) is 

to assume it varies according to an auto regressive model [8]: 

    𝑥(𝑛) = 𝑟(1)𝑥(𝑛 − 1) + √1 − |𝑟(1)|2 𝒗(𝑛)       (9) 

Where 𝑟(1) = 𝒥0(2𝜋𝑓𝐷𝑇𝑠) and 𝒗(𝑛) is a white noise process with unit variance. 

Now we can assume a weight vector with the entries of these Rayleigh fading coefficients and as 

the coefficients change at the same rate the above approximation indicates that the variations in 

weight vector could be approximated as: 

     𝒘𝑖
𝑜 = 𝛼𝒘𝑖−1

𝑜 + 𝜼𝑖       (10) 

Where 𝜼𝑖 is the non-stationary variable part of random-walk model with the covariance matrix [7]: 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

x

J
0
(x

)

 

 

zeroth-order bessel function
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     𝑅𝜂 = (1 − 𝛼2)𝐼       (11) 

With 𝛼 = 𝑟(1) and 𝐼 to be a unit matrix. The value of 𝛼 depends on Doppler frequency. This how we 

produce the time varying weight vector and in other words we change the unkown vector estimation 

problem to a channel estimation problem with the help of WSNs. Further explanations are given in 

simulation part. 

III. TRACKING PERFORMANCE 

In this section we will present the necessary calculations towards mean-square performance of 

IDLMS algorithm in tracking task. Then we will apply these calculations to the proposed Rayleigh 

fading channel estimation problem.  

First we start with our data model for tracking performance: 

     𝒅𝑘(𝑖) = 𝒖𝑘,𝑖𝒘𝑖
𝑜 + 𝒗𝑘(𝑖)      (12) 

Where 𝒘𝑖
𝑜 is given in (10), 𝒖𝑘,𝑖 is the regressor vector and 𝒗𝑘(𝑖) is additive noise. Now we define 

weight error vector: 

     �̃�𝑖 ≜ 𝒘𝑖
𝑜 − 𝒘𝑖                                (13) 

The mean of this vector can be written as [3]: 

    𝔼�̃�𝑖 = [1 − 𝜇 ∑ 𝑅𝑢,𝑘
𝑁
𝑘−1 ]𝔼{�̃�𝑖−1 + 𝜼𝑖}                              (14) 

In (14), 𝜼𝑖 is a zero mean variable sequence with covariance matrix 𝑅𝜂. Our purpose is to achieve 

mean square deviation (MSD) and excess mean square error (EMSE) for each node defined as: 

     𝑀𝑆𝐷𝑘 = 𝔼‖�̃�𝑘,∞‖
𝐼

2
                   (15) 

     𝐸𝑀𝑆𝐸𝑘 = 𝔼‖�̃�𝑘,∞‖
𝑅𝑢,𝑘

2
                   (16) 

For the IDLMS algorithm in (4), the error signals can be defined as follows: 

     �̃�𝑘,𝑖 ≜ 𝒘𝑖
𝑜 − 𝝍𝑘,𝑖       (17) 

     𝒆𝑘(𝑖) ≜ 𝒅𝑘,𝑖 − 𝒖𝑘,𝑖�̃�𝑘−1,𝑖      (18) 

The variance relation for IDLMS algorithm in stationary case can be used to express mean square 

behavior of this algorithm: 

    𝔼‖�̅�𝑘,𝑖‖
�̅�𝑘

2
= 𝔼‖�̅�𝑘,𝑖−1‖

Π𝑘+1,1�̅�𝑘

2
+ 𝑎𝑘+1�̅�𝑘     (19) 

For Gaussian regressor data with Eigen decomposition 𝑅𝑢,𝑘 = 𝑈𝑘Λ𝑘𝑈𝑘
∗, matrix Π𝑘,𝑙is defined as [1]: 
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    Π𝑘,𝑙 = �̅�𝑘+𝑙−1�̅�𝑘+𝑙 … �̅�𝑁�̅�1 … �̅�𝑘−1      (20) 

Where  

    �̅�𝑘 = 𝐼 − 2𝜇𝑘Λ𝑘 + 2𝜇𝑘
2Λ𝑘

2 + 𝜇𝑘
2𝜆𝑘𝜆𝑘

𝑇                  (21) 

In this equation 𝜆𝑘 is a vector containing diagonal enteries of Λ𝑘. 

In equation (19) with the definition 𝑔𝑘 = 𝜇𝑘
2𝜎𝑣,𝑘

2 𝜆𝑘
𝑇, we can define row vector 𝑎𝑘 as [1]: 

   𝑎𝑘 = 𝑔𝑘Π𝑘,2 + 𝑔𝑘+1Π𝑘,3 … + 𝑔𝑘−2Π𝑘,𝑁 + 𝑔𝑘−1     (22) 

And �̅�𝑘 can be achieved with the transformed form of a non-negative matrix Σ [2]: 

     Σ̅ = 𝑈𝑘
∗Σ𝑈𝑘  , �̅�𝑘 = 𝑑𝑖𝑎𝑔(Σ̅)    (23) 

Now if we define: 

      �̅�𝑘 = 𝑈𝑘
∗�̃�𝑘     (24) 

Then equation (19) for a non-stationary condition with 𝒘𝑖
𝑜 = 𝛼𝒘𝑖−1

𝑜 + 𝜼𝑖 can be written as: 

 𝔼‖𝑈𝑘
∗(𝒘𝑖

𝑜 − 𝝍𝑘,𝑖)‖
�̅�𝑘

2
= 𝔼‖𝑈𝑘

∗(𝒘𝑖−1
𝑜 + 𝜼𝑖 − 𝝍𝑘,𝑖−1)‖

Π𝑘+1,1�̅�𝑘

2
+ 𝑎𝑘+1�̅�𝑘  (25) 

Using (17) we can write: 

  𝔼‖𝑈𝑘
∗�̃�𝑘,𝑖‖

�̅�𝑘

2
= 𝔼‖𝑈𝑘

∗(�̃�𝑘,𝑖−1 + 𝜼𝑖)‖
Π𝑘+1,1�̅�𝑘

2
+ 𝑎𝑘+1�̅�𝑘  (26) 

With the definition of  �̅�𝑖 = 𝑈𝑘
∗𝜼𝑖, the variance relation for IDLMS algorithm for the  non stationary 

condition of (10) is given as [3]: 

  𝔼‖�̅�𝑘,𝑖‖
�̅�𝑘

2
= 𝔼‖�̅�𝑘,𝑖−1‖

Π𝑘+1,1�̅�𝑘

2
+ 𝔼‖�̅�𝑖‖Π𝑘+1,1�̅�𝑘

2 + 𝑎𝑘+1�̅�𝑘  (27) 

In this relation a diag(.) operator which is used for diagonalization is omitted, and we can write: 

 𝔼‖�̅�𝑖‖Π𝑘+1,1�̅�𝑘

2 = 𝑇𝑟 (𝔼{�̅�𝑖
∗�̅�𝑖}𝑑𝑖𝑎𝑔(Π𝑘+1,1�̅�𝑘)) = 𝑇𝑟 (�̅�𝜂𝑑𝑖𝑎𝑔(Π𝑘+1,1�̅�𝑘))         (28) 

Now we can write (27) as: 

  𝔼‖�̅�𝑘,𝑖‖
�̅�𝑘

2
= 𝔼‖�̅�𝑘,𝑖−1‖

Π𝑘+1,1�̅�𝑘

2
+ 𝑇𝑟 (�̅�𝜂𝑑𝑖𝑎𝑔(Π𝑘+1,1�̅�𝑘)) + 𝑎𝑘+1�̅�𝑘  (29) 

Steady-state performance of IDLMS algorithm can be obtained when the 𝑖 index goes to infinity: 

  𝔼‖�̅�𝑘,∞‖
(𝐼−Π𝑘+1,1)�̅�𝑘

2
= 𝑇𝑟 (�̅�𝜂𝑑𝑖𝑎𝑔(Π𝑘+1,1�̅�𝑘)) + 𝑎𝑘+1�̅�𝑘  (30) 

The steady-state MSD of IDLMS algorithm for each node can be obtained by using the replacement 

(𝐼 − Π𝑘+1,1)�̅�𝑘 = 𝑞 = 𝑑𝑖𝑎𝑔(𝐼), as [3]: 
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Fig.3. Performance comparison between time varying weight vector and stationary case 

 

 𝑀𝑆𝐷𝑘 = 𝑇𝑟 (�̅�𝜂𝑑𝑖𝑎𝑔 (Π𝑘+1,1(𝐼 − Π𝑘+1,1)
−1

𝑞)) + 𝑎𝑘+1(𝐼 − Π𝑘+1,1)
−1

𝑞 (31) 

And steady-state EMSE can be given by replacing 𝜆𝑘 = (𝐼 − Π𝑘+1,1)�̅�𝑘 [3]: 

 𝐸𝑀𝑆𝐸𝑘 = 𝑇𝑟 (�̅�𝜂𝑑𝑖𝑎𝑔 (Π𝑘+1,1(𝐼 − Π𝑘+1,1)
−1

𝜆𝑘)) + 𝑎𝑘+1(𝐼 − Π𝑘+1,1)
−1

𝜆𝑘 (32) 

In both (31) and (32) �̅�𝜂 is defined as: 

     �̅�𝜂 = 𝔼{�̅�𝑖
∗�̅�𝑖}                (33) 

 

IV. SIMULATION RESULTS 

Here we explain and present our simulation results for tracking performance of adaptive 

incremental algorithms in distributed sensor networks. Two scenarios are taken to the consideration. 

First we adopt the time varying weight vector of [4] and [5] and then we will proceed to our proposed 

channel estimation problem and match theoretical and simulation results. In all of our simulations we 

assume a network with 20 nodes. It is important to mention thatby increasing the number of nodes, the 

number of iterations for convergence decreases but the amount of computation increases heavily. This 

is obvious from the simulation running time. All simulation results are averaged over 60 Monte Carlo 

runs. The steady-state curves are obtained by averaging the last 500 iteration results of simulations 

[2]. The variance of noise is considered to be the same for all nodes and we have 𝜎𝑣,𝑘
2 = 0.01. Also 

the step-size is considered to be fixed and it equals to 0.0045. 
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Fig.4. performance comparison in channel estimation 

 

A. Time varying weight vector 

Here we assume that our unknown weight vector is changing according to (5). In this case our 

weight vector is assumed to have eight entries. The dynamic model for 𝑤𝑖
𝑜is [4]: 

     𝑤𝑖
𝑜 = 𝑒𝑗𝜔𝑤𝑖−1

𝑜      (34) 

For changing this model to random walk model we can use mathematical operations but here we 

only present simulation results for time varying vector model and theoretical results are only provided 

for channel estimation scenario. In these conditions the tracking MSD of IDLMS algorithm is given in 

Fig. 3. The results are compared with fixed weight vector scenario (Stationary environment). It is 

obvious that the performance of algorithm in non-stationary environment is degraded comparing to 

stationary case. Similar results for diffusion strategy can be found in [4]. 

 

B. Rayleigh fading channel estimation 

In this scenario we consider a weight vector with 4 entries (𝑀 = 4) that are drawn from the model 

explained in (9) and (10). The MSD performance of IDLMS algorithm in estimating Rayleigh fading 

channel coefficients is given in Fig.4 for different Doppler frequency and sampling period quantities. 

In [15] it is mentioned for operating frequencies between 100 MHz and 2 GHz Doppler frequency 

shift can be as large as 128 Hz. Also in [8] sampling period considered between 10−6 to 10−3 

seconds.In this case the diagonal entries of covariance matrix in (11) can be derived using (8).With 

these assumptions we have channel coefficient estimation results. 

It is important to mention that when 𝑇𝑠 = 10−6 and 𝑓𝐷 = 10 we have 𝛼 = 𝑟(1) = 𝒥0(2𝜋𝑓𝐷𝑇𝑠) ≈ 1 

and so the MSD performance of channel estimation is almost similar to stationary senario. It is  
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Fig.5 comparison between theoretical and simulation results 

 

 

 Fig.6 comparison between theoretical and simulation results 

 

obvious from Fig. 5 that as Doppler frequency and sampling duration increase, the performance of 

network in tracking the changes in unknown vector degrades and when 𝑇𝑠is more than10−3, the 

algorithm may not converge. It is important to mention that the sampling period 𝑇𝑠inthese simulations 

is so low (order of 10−6 Seconds) that the changes of channel during these samples cannot be sensed 

visually. To address this issue we performed some simulations with longer sampling periods (order of 

10−3 seconds) and concluded that in these conditions, the convergence diagram will ripple heavily. In  

Fig.5 we present some of these results. 

Now, it is time to compare simulation results with our theoretical results. For this reason first we 

may pick a certain Doppler frequency and sampling period and using Fig. 2 we have access to 

matrix 𝑄. Then using equations (31) and (32) by invoking results in [12] we can find the exact 
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amounts of EMSE and MSD.  In Fig. 6 the steady state MSD and EMSE of IDLMS algorithm is 

presented and compared with theoretical results. For this simulation we assumed a fading channel 

with Doppler frequency of 66 Hz and sampling period of 10−6. 

 

VI. DISCUSSION AND RESULTS ANALYSIS 

In this paper we simulated and analyzed the performance of distributed incremental LMS algorithm 

in tracking time varying vectors. Two main scenarios are taken into consideration. First we assumed 

that the unknown vector changes according to (5) and performed simulations for this situation and 

compared it with stationary data estimation. Fig. 3 showed that the performance degrades in non-

stationary scenario and it was an expected result. For this simulation no theoretical analysis is 

performed. Next we assumed that we want to estimate a Rayleigh fading channel and unknown vector 

entries are channel coefficients. We simulated this assumption for different Doppler frequency and 

Sampling period amounts and concluded that as these two factors increase, the performance of the 

network degrades. The theoretical analysis for channel estimation scenario is then applied to our 

simulations and as in Fig. 6 there is a reasonable match between theoretical and simulation results. 

 

VII. CONCLUSION 

Over all in this paper we showed that the incremental distributed LMS algorithm can be used for 

tracking a non-stationary and time varying weight vector. The simulation results confirmed that as the 

variations of unknown vector in time gets more serious, the performance of network degrades. In 

future works we will perform channel estimation with distributed networks for a variety of fading 

channel types. Also the usage of more complicated distributed strategies like Diffusion strategy can 

help to improve performance results.   
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