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Abstract- Fog computing is a method for improving cloud computations 

performance attempts to expand the Internet of Things processes and 

distribute cloud services in the network edge. This paper proposes a 

real-time outsourcing and offloading mechanism to optimize the cache 

and CPU consumption in resource allocation to IoT users in a fog-based 

processing environment. Based on this mechanism, the computations 

that require heavy processing are moved to the network edge, and 

computations with lower processing needs are processed inside user 

devices. According to the simulation results, the average users' average 

service latency in the proposed method SPA-(Offloading) for 200 users 

has been improved in the range of 0.8 to 0.6. In addition, the profits of 

cloud and fog service providers for 220 users are higher than other 

methods. Also, the average system cost performance is evaluated, which 

is better than the other methods. The results show that this mechanism 

improves cache consumption, processing time, and optimal resource 

allocation to IoT users.  

 
Index Terms- Cache, Fog computing, Internet of things, Student project allocation 

algorithm.  

 

I. INTRODUCTION 

Fog computing service delays, it generates significant traffic for the Internet. In the face of these 

challenges, patterns of responding to latency-sensitive needs in the Internet of Things using cloud 

computing are shifting to the distributed computing approach [3]-[4]. Also, limited device resources at 

the edge often create problems for delay-sensitive applications. Therefore, some processing tasks 

must be sent to cloud centers. But since there are so many devices on edge, a good method to select 

these tasks and offloading them in the cloud should be used. Applying the computational offloading 

process can solve limited resources at the edge, especially for computationally heavy tasks. This 
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mechanism helps to improve efficiency and reduce energy consumption. In this paper, the issue of 

mutual benefit between users and service providers is stated. The proposed approach can be an 

optimal framework for better resources allocation based on the list of priorities which leads to more 

interaction between users and service providers. Due to the limitations of similar methods such as the 

Hungarian method, which is used for resources allocation and provides the optimal answer with the 

minimum criterias, so to get the optimal answer with the maximum criterias; In this method, it is 

necessary to make changes in the main problem and its variables. While, in the student project 

allocation method, to obtain the optimal answer, there is less need to make changes in the problem. 

Therefore, due to the importance of stability in the main variables in this article, the student project 

allocation method has been used. The SPA method can maximize profits by provided a list of 

priorities and limiting that list, adapting the student to the project, making preference lists in case of a 

change in decisions, and using real methods instead of statistical and random methods in the resource 

allocation process. This method has been proposed with the aim of increasing the profit and quality of 

services to users, user interest rate, average system cost, and reducing latency. Due to the importance 

of the offloading process in the network resources allocation, synthesize SPA with Offloading, leads 

to increased response speed to users, efficiency, and quality of services. The simulation results show 

the optimal performance of this method in the radio and computational resources allocation to IoT 

users, compared to other similar methods. In this method, the average SP profit is about 4.5%, and the 

average performance of the system cost for 210 users is about 47% better than the best of other 

methods. Also, users’ average service latency in the proposed method for 200 users is 0.6 sec. which 

is 25% lower than the best of other methods. The present paper is organized as follows: the literature 

review is discussed in Section II. The problem statement, context, and principles for the joint resource 

allocation scheme are presented in Section III. Afterward, in Section IV, the proposed methodology 

and SPA adaption approach for system modeling and SPA-(s,p) algorithm as a distributed solution are 

assessed. Simulation results are analyzed and evaluated in Sections IV, V, and VI. Finally, section VII 

concludes the paper. 

II. LITERATURE   REVIEW  

By applying fog computing, service providers can exchange shared radio and computational resources 

between objects. For such applications, for example, the fog computing perception mechanism of IoT 

in [5] can be considered. This mechanism has adequate and flexible node data properties that can 

improve IoT data resources effectively. In the medical field this developed system can be used in IoT-

based diagnosis in health care systems, where accuracy and real-time diagnosis are essential [6]. 

In [7], a multi-user storage system has been proposed so that users actively run on cache at their 

request. Caching and embedding are jointly configured in FDMA (Frequency-Division Multiple 
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Access) settings to reduce the edge server's energy usage and consumers under computing limits, 

communications, and storage capacities, as well as limitations.  

In [8], to minimize the overhead of the fog computing network, including the task process delay and 

energy consumption, proposed a QoS-aware resource allocation scheme, which jointly considers the 

association between fog nodes (FNs) and IDs. The simulation results demonstrate that the proposed 

scheme could efficiently ensure the loading balance of the network, and reduce the network overhead. 

In [9], According to wireless transfer technology and information concurrency, the joint discharge 

of tasks and energy in IoT networks fog has been surveyed and It has been indicated that when there 

are queues of tasks within the nodes, each task's evacuation decision is made temporarily. Then the 

optimal strategies for evacuating tasks and energy are mutually identified over several periods. In this 

article in order to jointly minimize the task execution delay and the energy consumption, an algorithm 

is proposed. 

In [10], a cloudlet-based RL optimization system SDEC (Software-Defined Edge Computing) using 

new tool has been proposed. This approach demonstrates how ML can address the offloading problem 

and resource allocation in MEC (Multi-access edge computing) networks. This method provides 

services for all users in SDN-based (Software-Defined Networking) edge networks by sharing 

experiences in computing tasks by all service providers. 

In [11], a dynamic optimization scheme for an IoT fog computing system is proposed. This scheme 

is aimed at minimizing the system cost associated with delay and energy consumption. This scheme 

includes an algorithm for offloading and computing shared radio resources based on the Lyapunov 

optimization method. The proposed algorithm minimizes the upper limit obtained from the system 

performance and solves the main problem by dividing it into several parts in each time interval. 

In [12], the goal is to minimize the average energy consumption by guaranteeing stability for all 

system queues. The PORA (Predictive Offloading and Resource Allocation approach) is a distributed 

offloading and resource allocation scheme for multi-layer fog computing systems that takes advantage 

of expected offloading to reduce energy consumption while maintaining queue stability. Simulation 

results show that, this method cause near-optimal power consumptions. 

In [13], a scheme is proposed for offloading and computational resources allocation with energy-

saving to minimize the system performance cost. The topic of computing task loading and fog 

computational resource allocation in IoE (Internet of Everything) is discussed in this scheme. The 

problem is formulated to reduce device costs. Simulation findings show that the proposed plan will 

save up to 50% on device costs instead of current systems.  

In [14], an efficient load balance technique (ELBS) is used for real-time fog computing via fuzzy 

and probabilistic neural networks, fog computing for supporting real-time programs such as 

healthcare, industrial systems, and intelligent traffic signs. This is a suitable strategy to achieve load 

balancing in fog environment as it guarantees a reliable execution for real-time applications. Results 
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showed that the method outperforms load balancing similar methods as it achieves the lowest average 

turnaround time and failure rate.  

In [15], was introduced peer-to-peer (p2p) mechanism considering the cloud computation limits in 

terms of bandwidth, delay, real-time response, fog computing to perform the IoT devices' requests 

sent to the cloud. This method minimizes the requests that go to the cloud. This proposed (p2p) model 

enhances fog computing by adding a p2p mechanism into the fog layer, which allows the fog nodes to 

collaborate in order to meet the client's needs. The results show that it has better outcomes in terms of 

bandwidth throughput compared to cloud computing and fog computing models. 

In [16], a shared cache mechanism with a communication mechanism is proposed, which involves 

software fetching, hiding and multicasting, loading task input data, job execution, and computational 

loading results. This mechanism minimizes loading and time allocation policy through optimization 

and pooled storage and reduces energy consumption, considering storage and time constraints.  

In [17], it is proposed that cache-conscious be replaced to decrease hybrid main memory cache 

costs, reducing the amount of memory caching in NVM (Non-Volatile Memory) and improving 

hybrid memory cache capacity. This study's experimental findings illustrate that this conscious cache 

performs better in system performance and enhances the performance up to 43.6% (on average, 

15.5%) than before.  

In [18], sub-channel allocation and power control to maximize the total rate at the two-cell network 

are investigated. Assuming there are some sub-channels in each cell that should be assigned to some 

users. The proposed method solves the problem of each user's power and the problem of sub-channel 

allocation, by adjusting the power consumption and assuming the area of low channel interference, 

according to the Hungarian method. The proposed algorithm was able to formulate the power 

consumption of each user that the numerical results show the better performance of the proposed 

method in the signal range on lower noise compared to other previous methods. 

III. SYSTEM   MODEL 

In this section, first, some basic parameters such as outsourcing issue, modeling of cache, and 

processing time are explained, and then the main system model is presented as follows: 

A. Outsourcing Issue 

Process outsourcing consists of three main parts: the application, preparation, and decision-making 

programs to outsourcing. Consequently, computation outsourcing can be moved from IoT devices to 

the remote cloud server. The first step is partitioning the application programs for outsourcing the 

necessary computations since this section divides the application program into outsourceable and non- 
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Fig. 1. Outsourcing  IoT systems with users, fog nodes, and remote cloud servers  

 

outsourceable computations. It determines which component needs to remain on the IoT device or 

fog server and what part be moved to the cloud server. However, deciding whether an element be 

outsourceable or not depends on various data. The programmer can label program components. For 

instance, he may outsource only some APIs. Also, outsourcing can be based on the program's 

processing time or its required memory during the runtime. The preparation part consists of all the 

activities necessary for outsourceable components, which involves selecting all remote servers, 

transforming and installing the code from small IoT devices. Therefore, to solve this issue, 

outsourcing decisions are the final step before executing on the remote server, which is performed for 

outsourced components. If outsourcing decision is during the runtime, more accurate information 

needs to be accessed [19]. 

We are thinking about an IoT system with a hierarchical calculation structure and a collection of 

IoT members, fog nodes, and cloud remote servers. The tasks may be performed locally by each IoT 

customer or outsourced to computer servers. Fog nodes and external cloud networks are computer 

servers. In their vicinity, Fog Nodes can provide IoT users with computer services. IoT users can 

outsource their computing tasks to the fog nodes. IoT outsourcing scheme is shown in Fig.1. 

Computations that require heavy processing are outsourced towards network edge via real-time 

outsourcing and computations that need low processing are processed in IoT and user devices. This 

model consists of three steps, which are, respectively, as follows: 

 In the first step, the time needed for processing is calculated. By considering the request type 

(heavy and light requests), if they need a lower amount of time, they are processed inside the IoT 

device, and if heavy processing is required, they are sent to the fog server queue, and the mean 

waiting time for new requests is calculated. Overall, when a request enters the fog, it is queued 

until the fog is prepared for proposing it. Then we can obtain the total delay by computing the 

queue wait and request processing times.  
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 Second step, the best time for fog node is found based on a cost dependent. This step lists the 

best neighbor nodes that can handle the additional load and process the IoT request. This list is 

created based on the position of the nodes (i.e., the closest fog).  

 The third step involves maintaining the fog node. When the queue request is beyond fog node 

capability, outsourcing to a cloud server or another edge is performed.  

B. Processing Time Modeling 

A cloud edge computing model, comprises several remote servers, bases, edge servers, and limitless 

IoT or bus terminals. Near each base station is a cloud service side. The base station is accessed from 

a bus terminal or IoT system through a wireless network. A high-bandwidth cellular network is used 

to link the base station and the edge server. Therefore, we presume that the edge of the server is at the 

base station and that the device fog nodes are in the form {1,..., S}. Further, we take the range of 

S={0, 1, ..., S}, which shows all remote cloud service servers and is utilized in modeling all remote 

cloud servers into consideration. IoT users may then use them to upload their computer activities. 

We believe there is enough computational power on remote cloud servers. Each cloud server is 

considered an exclusive F computing power virtual machine, which defines server availability per unit 

of time. In contrast to remote cloud servers, the computing capacity of fog nodes is reduced. Each fog 

node is evenly distributed between IoT users. Fog nodes cannot prioritize IoT users' services since 

they take their priorities into account and follow strategic behavior. Therefore, several IoT devices, 

including smartphones and monitoring cameras, mobile phone cameras, fire alarms, etc., seen as the 

users U={u1,u2,u3,...} is presumed to exist. Each IoT user can receive a specific cloud service 

provider (SP) computer or storage service, showing it to be sp = {sp1,sp2,...}. These SPs can observe 

various users with particular computational needs regarding data sizes and service delays. 

The processing time of each user's device is shown as T= {t1, t2, t3, …}. Computational tasks are 

sent to the cloud for those users that are not delay-sensitive. On the other hand, if the users are delay-

sensitive, SPs assign one of the nearby fog nodes (FNs) to outsource computational tasks. FNs closer 

to users leads to lower transmission delay. CPU computing time is determined by the processing rate 

of each fog node (FN). Each spj allocates radio resources of  1 2,  ,  , j j j j

LW w w w   (channel 

bandwidth)  and computing resources   1 2,  ,  , j j j j

LC c c c   (CPU cycle rate) with a processing time 

 1 2,  ,  , j j j j

LT t t t  while selecting the proper FN from  1 2,  ,  , j j j j

LFN fn fn fn   each user's 

settings. From the viewpoint of users who process delay-sensitive content, they propose value and 

priority to SPs for better resource competition. Therefore, here we consider a threshold time t, and 

each user with a time higher than the threshold outsources the computations to fog edge. Users with 

processing time lower that threshold utilize a lower CPU clock frequency, and therefore we propose a 
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competitive value for acceptance. Outsourcing time (Tapp) between IoT devices and remove server is 

computed according to the following relation [20]: 

t
app ex

d
T t

BW
                                                                                                                                (1) 

Parameters such as outsourced data (dt), network bandwidth, and outsourced program runtime are in 

the server (tex). IoT devices can estimate the connection time from the available program and 

communication channel to send the computation data while outsourced. It receives the data of the 

computing results from the IoT device server. Computing runtime in the server (tex) depends on 

various factors such as CPU frequency, communication bus frequency, cache size, number of active 

cores, and properties of outsourced programs. Hence, tex is calculated using the below method:  

 

cpu bus io mem
ex

cpu bus io mem

c c c c
t

f f f f
                                                                                                             (2) 

 

Parameters Ccpu, Cbus, Cmem, and Cio are constant and depend on instructions, and fcpu, fbus, fio, and fmem 

represent CPU core, bus, input-output, and memory, respectively.  

C. Cache Memory Modeling  

Cloud computing makes it possible to store and access data and programs over the Internet without 

requiring local data storage. The computing performance in cloud computing can be improved using 

cache. In the caching process, the recent internet content and requests are stored. Once the data is 

stored, when requests for data are received, these data are not searched on the web, but a load balancer 

responds to these requests. It reduces the time it takes to respond to requests and reduces the workload 

on the web server. The cache is a service operator that locally stores recent requests and works 

content. The load balancer responds to requests similar to those stored in the cache instead of being 

sent to the web server. As a result, request time for such requests is shorter than usual and reduces 

server workload. Assume that  1 2, , , kU u u u  are upper limits of cache capacity of server data 

and  1 2, , , kC c c c  are requests in the server queue. For each data content j, jkx  is examined to 

show whether data are hidden in the server edge k[21]. 

0,            
 

1,          
jk

k does not cache data j
x

k caches datacontent j





                                                                                                    (3)  

 The server determines whether to store data content on the server's side. Depending on the data 

records used, a cache control mechanism is employed. It ensures that if cache memory is available, it 

will store as much data as possible. If cache memory is complete, utilization records are used to find 

the appropriate cache memory for replacement. Since the controller analyzes the real-time cached  
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Fig. 2. Outsourced cache management flowchart. 

 

block, the cache controller can be accessed at any time, and the type of data stored in the edge server 

can be investigated. The flowchart and mechanism for cache management are shown in Fig. 2.  

Based on records for storage utilization and outsourcing, a cache controller changes and decides the 

cache policy. The ijky function is utilized to determine whether or not the terminal computer is 

processing the computational work of j in edge server k. When k=0, the terminal computer delegated 

computing operations to a cloud computing center in another location. 

0,          
 

1,                
ijk

device i performs job j locally
y

device i offloading job j at k





                                                                                       (4)    

If a terminal computer sends working data j to an edge server, the transmission delay Tj
ik between 

edge servers i and k can be determined Tj
ik using the following form:  

*j

ik ik jT e d                                                                                                                                     (5) 

The eik denotes the time it takes for data to travel from terminal unit i to server edge k. During work 

computation j between edge servers, dj shows the data size that needs to be transmitted between the 

edge and local CPU. When k=0, eik displays the unit data transfer delay between the terminal 

computer and the remote cloud server and the size of the data to be sent. Furthermore, Ck
j is the time 

spent running task j in the edge server k, including waiting and computing time. Additionally, the 

waiting period refers to the time elapsed by a completed task or nap, while computing time refers to 
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the time elapsed by a working task. K=0 denotes the time it takes to run task j on the central cloud 

server. Ck
j denotes the task's local running time as shown by terminal system i. 

For equivalence the parameters with time, the energy consumption are converted to the equivalent 

execution time and the offloading problem is translated to the equivalent response time. Also, if a set 

of devices in the terminal covered by edge server k is displayed with kM , then the equivalent 

weighted response time for all jobs (  1.2 .J j   ) in kM , which must be minimum, is 

calculated as:  

        i* * 1 * 1 * ˆ

k

j j j

j jik k jk k ijk i

j J i M

P r y C x T y C    
ò ò

                                                   (6) 

Where jr  is job j ’s delay sensitivity and ˆ j

iC   is local equivalent weighted execution time which is 

calculated as follows:  

 ˆ * * *

c

jj j

i j it

j

E
C r C

E


 
   

 

                                                                                                        (7) 

where β is the coefficient of local energy consumption, so the larger value of β, shows the more 

device attention to local energy. 
j

iC  is the local execution time of job j , done by terminal device i. 

c

jE  is the required computation energy consumption when performing computation job locally and 

t

jE  is the transmission energy consumption. If 
c t

j jE E  then the work is sent to the edge server or 

cloud server; otherwise, it runs on the device.  

IV. PROPOSED   METHOD 

 In this section, while presenting a theoretical framework, first the basic definitions such as student 

project allocation issue and user satisfaction with service providers and profits of SPs from resources 

allocation to users are presented; then the main research problem and its algorithms are provided as 

follows: 

A.  The student project allocation issue 

 
Student Project Allocation (SPA) problem is a method where several projects are allocated to some 

students with the help of lecturers. According to the structure and framework of the SPA problem, 

each lecturer provides students with various projects. Each student can decide about the available 

projects. They can choose to accept or reject any of these projects. A lecturer can provide several 

projects, or there may be many students assigned to a project. Figure 3 shows the allocation of radio 

and computing resources in this study and compares it with the SPA problem. Indeed, the students 

and projects are considered equivalent to devices on IoT and radio spectrums of fog nodes. Also, the 

lecturer is regarded as a cloud resource. SPs provide radio resources packets, and existing processors  
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Fig. 3. The student project allocation modeling. 

 

and the users are suggested to SPs for allowed packets. Therefore, it is enough to determine classes 

for assigning projects to students and then perform simulation. 

In this allocation process, it is essential to consider the critical definitions described in the 

following. 

B. User satisfaction 

One of the most relevant metrics for assessing service efficiency is user satisfaction. Service delay 

can be used as a criterion to measure user satisfaction if a set of delay-sensitive users are involved. As 

the first step, it should be ensured that the quality of exchange between users and FNs (Fog nodes) 

satisfies such a need. In other words, to have accurate and complete results, the Signal to Interference 

and Noise Ratio must be greater than the threshold. The SINR (Signal to Interference and Noise 

Ratio) obtained from  in use can be defined as:  

 

   , ,

,,

, 

, 1, 

, 1 ,  , 2

, 1 , 1, , i

i j

i ki j

k i j i j

k k Niu u i i

P g

h 
 

 
 

                                                                          (8)  

 

where iP  and 
,

,11

i j

kg are transmission power and channel increase between user iU  and fog node 
j

1fn  

using channel 
j

kW , respectively. 
´

,

,1

i j

kh  denotes the profit of interference channel obtained from each 

of the other mobile users iU   in 
j

1fn  due to channel reusing. Here, we assume that radio resources are 

used among SPs, and radio resources in SP can be coordinated to prevent interference. 
2

N  denotes 

channel noise. It is required to have 
,

,1

i j

k min   for successful transmission. If SINR requirements 

are met, transmission rate from iU  in 
j

1fn  using 
j

kW   can be written as: 

 , ,

,1 ,1log 1i j j i j

k k kr w                                                                                              (9)  
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Transmission time, CPU loading time, and receipt time are three-time intervals that can trigger 

delays in delivering services. As a result, interference from other users on the shared channel will 

affect each user's transmission rate. Furthermore, the shared CPU running rate with each device is 

influenced by the shared CPU users. For the sake of convenience, each shared CPU user is assigned 

an equal share of the overall CPU rate. This allocated share is denoted by 
,

,1 1,

,1

1
   

i

i j j

k i j

ku u

c c







..   

Thus, the service delay for the time that the resource pair  1,j j

kW C  i is used can be defined as 

follows: 

,

,1 , ,

,1 ,1

i j i i
k trans proc recv i j i j

k k

D DC
t t t t t

c c
                                                                        (10  

In the general process, the users are all allowed to inform service providers about their needs. Also, 

service providers try to satisfy fog users by establishing relationships with them to find appropriate 

nodes for users' loading computing tasks and assign the required radio spectrum to meet their needs. 

Calculating service delay using formula (8) and considering it in the allocation process leads to user 

satisfaction. 

C. SP profit 

Mandatory profit is a factor causing SPs to provide better service for their common users. Another 

factor for evaluating the system performance can be price suggestions from users as SP profit. The 

price suggested by each user does not depend only on Ti delay; its size Di affects it. We presume a 

linear relationship occurs between the price and the size of the data without sacrificing generality, and 

there is a delay inversion. Thus, the suggestion from each user can be presented as the following. 

 , i i iO f D T                                                                                                                               (11)  

where f must be an incremental function for Di and a decreasing function for Ti. for simplicity, we use 

the below function to define f(Di, Ti).  

     i
i

i

aD
O

T
                                                                                                          (12)  

 in which, a is a parameter with unit dollar/Mbps, and Oi is the price ui tends to pay to each SP in the 

case of adaptivity. Each SP provides service for more than one user and therefore receives more than 

one suggestion. SP profit is defined as total offers collected from all users. Each SP's price can be 

associated with electricity consumed for transmission and storage, which is considered to be fixed for 

simplicity. We neglect fixed services costs while considering the SP profit. Consequently, the total 

profit for each SP is defined as follows [22]. 

,

,1

i

i j

i k i

u u

Reu O


                                                                                                                                                                         (13) 

D.  Spa- (S, P) offloading algorithms in research 
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Unstable matching between resources and users may lead to a problem in which two servers (SPs) 

exchange data with their identical users simultaneously. Such challenges will eventually lead to 

undesirable and unstable operations in the network. Therefore, the SPA-AP algorithm can be used as 

an efficient method to  calculation time proceessing and outsourcing between users and resources. 

Algorithm(1) reflects this approach. According to the cache modeling done in the previous section, in 

algorithm (2), the cache's extent is used in the resource allocation process is investigated.  

 SPA- (s, p) offloading algorithm of processing time modeling  

Edge devices have limited resources. Therefore, some processing tasks must be sent to the cloud 

centers. In other words, such tasks are offloaded to the cloud. However, there are many devices on 

edge. So we need a mechanism to select these tasks to offload them to the cloud. This problem can be 

modeled and solved using the proposed algorithm. 

In this algorithm, we must first calculate the interference caused by offloading the workload of each 

device. To this end, the devices that follow the task offloading strategy first send a test signal to the 

base station. The base station receives these test signals on each channel and calculates the 

interference. The base station then gives feedback to the devices. As a result, each device can detect 

interference in its chosen channel and decide whether to offload its workload. If a device decides to 

offload, it will send a request to the cloud to update information. Then, the cloud randomly selects one 

of the devices that have sent requests. This algorithm consists of a set of variables with two input, 

output parts. In the meantime, we can start the processing operation by initialization.  

 

 SPA- (s, p) offloading algorithm of cache modeling 

Cache memory applies complicated algorithms to predict and store CPU-required data for 

processing. 

The cache uses sophisticated algorithms to predict and store the data required for the processing of the 

processor. Therefore, the CPU first searches for the required data in the cache. If this data is found in 

the cache, the CPU reads it. This data is stored in a cache that is inside or near the processor. 

Therefore, in this method, we will achieve a high-speed process. However, in the proposed algorithm, 

the task must be assigned to the machine with the lowest workload. In this method, the cache 

alternately examines the queue of requests and assigns them to virtual machines. The cache also 

maintains a list of assigned tasks to determine which virtual machine should be assigned the new task. 

In this algorithm, the client requests and selects the appropriate virtual machine. Then the cache finds 

the suitable virtual machine cache for subsequent requests. According to SPA-AP algorithm features, 

this method includes two sections; input and output 
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Algorithm 1: SPA- (s, p) offloading algorithm of processing time modeling 

 Input: Users U, bandwidth W, fog nodes FN, the processing time for each user, threshold time for 

outsourcing.  

Output: Modification M. 

 Initialization: The list M is empty, and all users are free. First SPA-AP algorithm pseudocode and 

processing schedules will be defined as the following: 

1:                    Putting the result [ajk] after reaching the desired solution 

2:                          Initialization : Execution Time = tjk; 

3:                               Put users (ui) in the first location rp_(1,k)^j in ρL_i^user. Add a new user 

                                    to list M and pick this user from the list ρL_i^user. 

4:                                   For all computing resources (rp_(1,k)^j) 

5:                                   While rp_(1,k)^j, if the sum of the times C-cpu,  C_bus,  C_mem, and C_io; 

                                        is lower than the threshold time, perform the following tasks 

6:                                     Find (uwst, rpwst) for outsourcing the rp_(1,k)^j in list spj 

7:                                   Remove (uwst, rpwst) from list 

8:                                End of the loop while 

9:                           End of the loop for 

10:                 End of the operation is evaluated via modification in variable M 

In this algorithm, resource allocation is possible only if the time obtained for outsourcing is lower 

than the IoT program's processing time. Thus outsourcing process will be performed, and project 

allocation is achieved. 

.Algorithm 2: SPA- (s, p) offloading algorithm of cache modeling 

Input:     Cache memory and remote server  

Output:    Modification M. Pseudocode of the second SPA-AP algorithm  

 Moreover, the cache memory can be defined in the following way in allocating resources to the users.  

1:                Putting the result [ajk] after achieving the desired solution 

2:                       Initialization of cache memory and server 

3:                           Put users (ui) in the first location rp_(1,k)^j in ρL_i^user.  

                                 List M adds a new user. It picks this user from the list ρL_i^user. 

4:                                 (rp_(1,k)^j) is calculated for all resources. 

5:                               Selecting resource k from list LA (resources available in remote server 

                                for outsourcing) 

6:                          Initializing the tasks to be outsourced 

7:                     Finding the lowest available cache among remote server and IoT devices memory  

8:                Allocating rp_(1,k)^j based on the lowest cache memory 

9:         Terminating the task with a modification in variable M 
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Fig. 4. Users' average service latency 

 

In this algorithm, resource allocation is performed when the cache used in the IoT device is more 

than the remote server.  

V. PERFORMANCE   EVALUATION  

Variables applied in this SPA(S-P) algorithm include bandwidth, cache memory, CPU cycle, 

service providers' efficiency (SP), and system cost performance. Some users   M are distributed in the 

network, which each SP has a k=5 channel band for users for sharing, and bandwidth is set to w=5 

megahertz. An equal capacity is determined for each channel and fog node, which qr = qc =100 is the 

service provider capacity. The maximum processing time is assumed as max time proc =10, and users' 

delay, data size, and CPU cycle are determined according to different IoT devices. In this regard, 

service consists of two offload and processing delays, which the rate of this processing for each FN as 

uniform distribution is set to [5 and 6] *1010 cycles/second. We define the permittivity constant as 

C=10-2 to increase the constant g propagation. 

Fig. 4 shows a compared about average computing and latency between four methods of random 

method, EDM algorithm, SPA(S-P) algorithm, and suggested SPA offloading process. Overall, 

service delay increases in all four methods as the number of users increases. However, because a more 

significant number of users cause lower resource allocation in each averaging, a more considerable 

delay will result. Fig. 4 shows average service latency for 200 users. This parameter, up to 50 users, is 

relatively the same for 5 methods. Still with an increasing number of users the average service latency 

for the three methods SPA-(s, p), UOC and SPA-(s, p) and SPA-(s, p) offloading, have the same 

values. Still, the proposed method has a lower latency between these three methods than the previous 

best method by 40%. 
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Table I. Users’ average service latency 

Num Methods 
First 

Latency (sec) 
Seconds Latency (sec) Number of Users 

1 SPA-(s,p) ,UOC 1 1 200 

2 SPA-(s,p) 0.9 1 200 

3 EDM 1.2 0.8 200 

4 Random 1.3 0.9 200 

5 SPA-(s,p) , Offloading 0.8 0.6 200 

 

Table I and the comparison of listed methods indicate that EDM and random methods have the 

highest latency lying in the range of 0.8 to 1.2 from 200 users and 0.9 to 1.2 from the same number of 

users. However, the latency for the SPA-(s,p) Offloading method lies in a normal range and a range 

from 0.6 to 0.8 from 200 users; it has the lowest latency time compared with other methods. Because 

of the outsourcing, processing the big data, average runtime, and latency in the suggested scenario 

decreased significantly compared with other methods. 

In the case of medium profits, almost all users can synchronize with one source pair before the 

number of users reaches the maximum network capacity. However, when the number of users exceeds 

the network capacity, each user must compete for a share and usually, users who need more time, they 

offer higher prices and therefore have a better chance of being selected and serviced by SP.  

 

 

Fig.5. SPs' profit. 

 

As shown in Fig.5, when server profits are up to about 180; users have had similar performance in 

four methods. But from 180 users up to 220 users, according to the simulation results, the average 

profit of service providers in the proposed method is 4.5% more than the previous best method. 

Therefore the service provider can get all the benefits due to the better speed of the proposed method 

in resources  

 



298                                                                     Optimized Method for Resources Allocation to IoT Users in Fog computing 

 

 

 

Table II.  The average efficiency of SPs and users 

Num Methods 
SP 

profit(1) 

SP 

profit(2) 
Number of Users 

1 SPA-(s,p) , UOC 60 220 225 

2 SPA-(s,p) 60 210 225 

3 Random 60 199 225 

4 SPA-(s,p), Offloading 60 230 225 

 

 

 

Fig.6. The ratio of users satisfying delay requirement. 

 

Fig. 6 shows the level of user satisfaction with the delay in providing the service. Initially, this item 

was the same for all four methods, equal to 100%; however, with increasing the number of users, the 

level of satisfaction, with the delay, decreased to 150 users in 4 other methods, except the random 

method that was the same and equal to 75%; from 150 users upwards, the variation of this parameter 

was not significant. Since delay-sensitive users suggest higher prices to service providers, so they are 

more likely to be selected by SPs, so these users are delayed. On the other hand, users who offer 

higher price, offers to bring better profits to SPs. Comparing these two items, in Fig. 6 and Fig. 5, 

shows that the proposed method compared to other methods results in reducing users' latency and 

increasing SP profits significantly. At the same time, it has better performance due to the optimal 

management and resources allocation between service providers and users. According to the proposed 

algorithm, operations that require heavy computing, outsourced and operations with less complex 

computations are performed on IoT devices. Therefore, the proposed method has less delay than other 

previous methods.     
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Table III. Ratio of users satisfying delay requirement(%)  

 

Num Methods 
First 

 Delay (%) 
Seconds Delay (%)  Number of Users 

1 SPA-(s,p) , UOC 99 75 200 

2 SPA-(s,p) 97 75 200 

3 EDM 96 65 200 

4 Random 96 0 200 

5 SPA-(s,p) , Offloading 91 67 200 

 

Table IV shows SPA's results-(s,p) performance with offloading in average efficiency rate and 

system performance.  

The evaluation results listed in the tables indicate that in a certain number of users, the efficiency 

rate and system performance in the SPA-(s,p) offloading method are better than other methods. The 

proposed method's performance cost is carried out based on the users' rate of profit in allocating the 

required resources in the suggested algorithm framework. 

 

VI. CONCLUSION 

In this paper, the resource allocation problem in fog computing is investigated, emphasizing 

properties of processing resources in the IoT, using the outsourcing principle to create a reliable 

relationship between users and resources. SPA-(s,p) offloading modeling is done based on the SPA 

issue in the proposed system, and an interface is built between IoT users and SPs (service 

providers) and FNs (fog nodes). The proposed method uses real-time decision-making and can 

make quick decisions regarding the processing of tasks on IoT devices or fog servers. so a small 

volume of processing and computational load are performed on the IoT device, while heavier 

processes and computations are outsourced to the network's edge. As a result, this method achieves 

a significant improvement in efficiency, cost, and reduced processing time and utilization of system 

resources such as cache compared to previous methods. This method was also able to improve the 

average system performance and service latency compared to other previous methods. Improving 

these parameters finally leads to an increased QoS at the network.  
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Fig.7. System performance cost in terms of the number of users 

 

Table IV.  System performance cost in terms of the number of users 

Num Methods Cost Performance(1) Cost Performance(2) Number of Users 

1 SPA-(s,p) , UOC 2.7 0.95 225 

2 SPA-(s,p) 1.7 0.95 225 

3 Random 2.3 0.8 225 

4 SPA-(s,p) , Offloading 2.6 1.4 225 

 

For future work, it is recommended to use the Hungarian method or other similar methods to 

optimize the resources allocation of IoT users in fog computing. 

 

The results of simulating each of these evaluated methods based on the performance are given in 

Table III.  

Fig. 7 shows the cost of system performance. This parameter is a joint evaluation of the 

benefits of users and service providers to allocate the best resources to the users who request them the 

most and pay more for them. The higher the price offered, the more optimal it will be. In this method, 

all four methods reduce the cost performance of the system by increasing the number of users, 

because more users will have access to fewer resources. However, the proposed method for this 

parameter has a 47% better performance than the previous best method. The level is higher than other 

methods. 
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