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Abstract- In recent years, the problem of online data and information 

security has been increasingly serious and prevalent.  Security issues are 

resolved via cryptography.  Access control over the encrypted messages is 

necessary for some applications, therefore message encryption cannot 

simply achieve the stated aims. To achieve these requirements, attribute-

based encryption (ABE) is used. This type of encryption provides both 

security and access structure for the network users simultaneously. Fuzzy 

Identity-Based Encryption (FIBE) is a special mode of ABE that provides 

a threshold access structure for the users. This threshold value is set by the 

authority for users, which is always fixed and cannot be changed. So, the 

sender (encryptor) will not play a role in determining the threshold value. 

The mentioned issue exists also in Key Policy Attribute Based Encryption 

(KP-ABE) schemes. In this paper, we present a FIBE scheme in addition 

to the authority, the sender also plays a role in determining the threshold 

value. Thus, the policy will be more flexible than previous FIBE schemes 

in that the threshold value is selected only by the authority. We can call the 

proposed scheme a dual-policy ABE. The proposed technique for flexibility 

of threshold value can be applied in most of exist KP-ABE schemes. We 

use the (indistinguishable) selective security model for a security proof. 

The hardness assumption that we use is the modified bilinear decision 

Diffie-Hellman problem. 
 

Index Terms- Attribute-based encryption (ABE), Secret Sharing multiplication, Fuzzy 

Identity-Based Encryption (FIBE), fine-grained access policy, Threshold value flexibility. 

 

 

I. INTRODUCTION 

The simultaneous provision of information security, as well as the application of access control on the 

messages of different networks, is one of the most widely used topics in cryptography. We declare the 

importance of this topic by an instance. Suppose that a patient wants to send his/her health 

information to a doctor who works at a special hospital H. In the classic encryption methods, the 
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patient has to be familiar with a doctor and has his public key. Then he/she should encrypt the health 

information with this key and send it to the doctor. This method has some problems in big networks. 

Because the network users have to be familiar with all of the other users. Also, the users have to learn 

a lot of keys from other users. So, applying access control to the encrypted data based on users' 

attributes can be solved this problem. In this approach, called Attribute-Based Encryption (ABE), 

knowing the user's ID and the related key is not required for encryption. Because the users are 

described with a set of attributes. Therefore, the sender only should encrypt the message by these 

attributes. This approach can be very effective. For instance, in the mentioned example, this is enough 

that the sender encrypts his message by attributes doctor and hospital H. While this approach is really 

useful, it has some challenges in the real world. The first and most obvious one is creating a strong 

fine-grained access structure. This means that we can choose any set of users to select and send 

messages to. In some schemes, this has not been completely solved. This issue is evident in [1] which 

uses a single Threshold gate as an access structure. This special type of ABE is called Fuzzy Identity 

Based Encryption (FIBE). We want to improve this scheme to reach a stronger fine-grained access 

structure than the original scheme. Computational complexity is another challenge in ABE area. We 

improve the [1] scheme without forcing extra computational or communication overhead. Recently, 

some papers like [2], [3], and [4] tried to reduce the complexity of ABE schemes. The computational 

complexity is important in other cryptographic areas too e.g., PSI  [5]. The concept of Fuzzy IBE is 

presented in the next for better discussion. 

In Fuzzy IBE schemes like [1] users’ private keys are generated related to their attributes, i.e., a 

user as a receiver has a set of attributes like ω. Now suppose that a sender encrypts a message with a 

number of attributes shown as  ω^' set. Now, if a receiver’s attribute set ω is close enough to the set of 

attributes ω^', the receiver is able to decrypt the message. This means that the number of attribute 

intersections(subscriptions) of receiver and ciphertext is greater than a threshold. To this end, a 

threshold value d is defined by the authority and if the condition |ω∩ω'|≥d holds, the user as a receiver 

will be able to decrypt. In the following, we want to express the weakness of fine-grained access 

structure in Fuzzy IBE schemes especially in [1]. 

Fuzzy IBE scheme problems: In a fuzzy IBE scheme like [1], the access structure is not fully fine-

grained. Suppose that data user u has an attribute set ω, the threshold value is d and the sender has 

selected attribute set ω^'. The data user u receives the encrypted data. If the condition |ω∩ω'|≥d holds, 

the user u can decrypt. Now suppose that the sender’s goal is to prevent this user from decrypting. In 

scheme [1], the sender just can reduce the attribute set ω^'  which can cause the sender’s target 

attributes not to be completely selected and other legible users may not be able to decrypt as well. For 

instance, suppose that there is a user his/her access policy is a threshold gate, as shown in figure 1. 

The sender encrypts a message by applying attribute set {A,B,C,E}. Regarding figure 1, this is clear 

that this user can decrypt the sender’s message. Because his/her access policy is the threshold gate. 
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Fig. 1. Threshold access policy 

 

The threshold value is 2 from 4 input attributes. Inputs of this gate is {A,B,D,F} attributes. 

According to ciphertext attributes, this is clear that the attributes of A and B are the intersections. 

Therefore, this user is legal to decryption. In this example, the sender wants to ban this user’s access. 

In previous schemes like [1], [6], [7] and [8] sender should remove some attributes in ciphertext to 

decrease the number of intersections. Generally, a sender cannot modify the access policy in KP-ABE 

schemes (e.g., [9]). In this scenario, our purpose is that sender can ban this user 's access without 

removing any attribute in the ciphertext. The previous schemes cannot act like this. Therefore, in 

these schemes, the sender cannot make a fine-grained access structure. If the sender can increase the 

threshold value to 3, can ban this user 's access. This is the contribution of our paper. This means that 

if the authority has selected the threshold as 2 and the sender chooses 1 then the total threshold value 

will be 3. In fact, in previous Fuzzy IBE schemes, the threshold value (for one user) is selected once 

and for all and remains constant. Lack of flexibility in selecting threshold will cause the above 

problem. Thus, we are going to solve these problems in our scheme by using the Secret sharing 

polynomials multiplication technique adapted from [10] and [11]. Our scheme also can be dual-policy 

ABE. Because authority and sender select the threshold value together. As we claimed before, the 

proposed technique can use in most KP-ABE schemes like [6] and [12]. In fact, if our technique is 

used in KP-ABE schemes, the sender can increase all threshold values at the gates in start of the 

circuit (leaf nodes of the access tree). 

In our scheme, the threshold value is divided into two parts. One part is placed on the key by the 

authority and the other part is selected by the sender and placed in the ciphertext. In the end, the total 

threshold will be the sum of two initial thresholds. Therefore, the threshold value will no longer be 

fixed and it may increase during encryption. Thus, the threshold value will be flexible. For this 

purpose, we used a method called the multiplication of shares in Shamir’s secret sharing. This 

technique can be used in KP-ABE designs such as [6] and [12]. 

The paper structure: The paper structure is as follows: In the following, the literature review and 

related works are presented in section II. We will introduce mathematical prerequisites and ABE basic 

requirements as preliminary in section III. Then we will present our intended scheme in section IV. 

The scheme’s security proof and efficiency comparison with [1] are also included in section V. 

Finally, we proposed a conclusion in section VI. 
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II. RELATED WORKS 

Sahai and Waters first introduced fuzzy IBE in [1] which led to the emergence of ABE. This scheme 

used only one threshold gate. As mentioned before, in this scheme sender selects a set of attributes 

and encrypts the message. The receivers can decrypt the message if they have enough of the sender’s 

intended attributes, i.e., the number of the sender's desired attributes and receiver's attributes is more 

than a predefined threshold. That is why it is also called threshold encryption. This scheme supports 

only one threshold gate while by applying the access structures that combine logical gates or in 

general multiple threshold gates, we can achieve a stronger fine-grained access structure. Therefore, 

the goal is to apply the more complex access structure (like Boolean functions) to the schemes.   To 

this end, Goyal et al. [6] proposed a scheme to apply a monotone access structure and also introduced 

the concept of Attribute Based Encryption (ABE). In this scheme, policy (the access structure) is 

applied to the users’ key. This means that an access structure is selected and applied by the authority 

in the key generation phase. This scheme is known as key policy attribute-based encryption (KP-

ABE). After that, Bethencourt et al. [13] presented a scheme in which the access policy was applied in 

the ciphertext. Unlike KP-ABE, in the scheme [13], the access structure is selected and applied by the 

sender in the encryption phase. These schemes are called Ciphertext policy attribute-based encryption 

(CP-ABE). Scheme [14] proposed a CP-ABE scheme that solved some of the problems and 

limitations in [13]. Recently, [15] proposed a CP-ABE scheme that supports the hierarchical 

architecture. This scheme is fully distributed which affords a high level of scalability. With increasing 

the number of users in a system, communication networks may encounter scalability challenges. 

Additionally, another type of ABE proposed in [16] is called dual-policy ABE (DP-ABE). In DP-

ABE, policy-making is placed both in the users’ private keys and also in the ciphertext. In fact, in this 

type of ABE, both the authority and the sender will be involved in policy-making. 

As mentioned previously, access structure is usually defined as a Boolean function, regardless of 

where it is applied either in the key or the ciphertext. If AND, OR, and threshold gates are used in this 

function, it is called a monotone access structure. The exact definition of monotone access structure 

can be found in [6] and [13]. Meanwhile, if, in addition to the mentioned gates, the NOT gate is used 

in the access structure, it is called a non-monotone access structure. Ostrovsky et al. proposed the first 

ABE scheme in [17] that supports a non-monotone access structure. There are also some schemes 

such as [18], [19] and [20] that use mathematical functions as access structures. 

As we mentioned before one of the most important problems in ABE schemes is computational 

complexity. One of the techniques to solve this problem is outsourcing. Green presented the 

outsourced Attribute-Based Encryption in [21] for the first time. This technique reduces the 

computational overhead on the side of users and the third party performs the calculations instead. 

Cloud is usually used as a third party. There are some other problems in ABE areas like key-escrow, 

communication overhead, revocation, and efficiency problems. Key-escrow problem is a common 
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issue in networks. [22] presented a first multi–Authority ABE scheme. Recently the schemes in [23], 

[24] and [25] tried to solve the key escrow problem. The schemes in [26] and [27] tried to solve the 

communication overhead problem by presenting a scheme that the size of ciphertext is constant. In 

other schemes, the size of ciphertext is increased by increasing the number of used attributes or the 

depth of the circuit as an access structure. Revocation of user or attribute is the other problem that 

[28] presented a scheme to solve this problem. In this regard, [29] proposed a Revocable Storage ABE 

scheme. In addition, [30] proposed a Puncturable ABE scheme that can provide decryption 

revocation. There are some new papers like [31] and [32] that focused on solving this problem. The 

schemes in [33] and [34] focused on efficiency and presented an ABE scheme for practical uses. 

 

III. PRELIMINARY 

In this section, some definitions and preliminaries, which we will use in our scheme, are proposed. 

This section includes the definition of Flexible Fuzzy IBE (as an ABE scheme), selective security 

model for KP-ABE, secret sharing schemes, bilinear pairing map and, hard problem assumption. 

 

A. Flexible Threshold Fuzzy Identity-Based Encryption 

Each Fuzzy IBE and ABE scheme has four algorithms: Setup, Key Generation, Encryption, and 

Decryption algorithms. We show these algorithms as Setup, KeyGen, Enc and Dec respectively. Setup 

and key generation algorithms are run by the authority. The encryption algorithm is run by the sender 

(data owner) and the decryption algorithm is run by the receiver (data user). Now, we define these 

algorithms for our schemes. 

Setup (λ,U): This algorithm receives the security parameter λ and the set of all attributes U, then 

generates a master secret key (MSK) and public keys (PK). MSK has to be kept safe and PK 

announce for all network members. The number of all attributes is n=|U|. 

KeyGen (MSK,d_1,ω): This algorithm gets the master secret key MSK, first-threshold value d_1 

and the attribute set ω⊆U as the inputs and generates the user’s secret key (SK). 

Enc (M, PK, d_2, ω'): This algorithm gets the public key PK, the second threshold value d_2, the 

intended message (M), and the attribute set ω'⊆U as the inputs and generates the ciphertext E 

corresponding to ω' and the message M. 

Dec (E,SK): This algorithm gets the secret key SK that is related to the attribute set ω as well as the 

ciphertext E that is related to the attribute set  ω'. If |ω∩ω'|<d_1+d_(2 )holds, the algorithm outputs ⊥, 

otherwise, this algorithm recovers message M and declares it as output. 
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B. Selective Security model 

In this section, we discuss the selective security model because we will use it to prove the security 

of our scheme. This model has a number of phases that are played out as a game between the 

challenger and the adversary. The following provides an explanation of this game. 

Initialization: The adversary first identifies a challenging attribute set α and the value of d_2 and 

sends them to the challenger. 

Setup: The challenger runs the setup algorithm and sends the public keys to the adversary. 

Phase 1: The adversary is allowed to select attribute set γ_j and send a query for private keys of γ_j  

as long as |α∩γ_j |<d_1+d_2  holds for all j. 

Challenge: The adversary selects two messages M_0and M_1   and submits them to the challenger. 

Then the challenger selects a random bit b and encrypts M_b with challenge attribute set α. 

Phase 2: Phase 1 is repeated. 

Guess: The adversary guesses which message is encrypted. We show the adversary guess by b^'. 

If the adversary detects the intended bit with a probability of more than 1/2  , it can win this game. 

 

C. Secret sharing 

Assume that we want to share a secret among several entities. Each entity is given a secret share 

none of them cannot compute the secret value. This is possible if a number enough entities cooperate 

with each other. The most important secret sharing scheme is Shamir’s scheme which operates like a 

threshold gate. In this scheme, if a secret is shared among n entities and if there are t or more of these 

entities, the secret can be recovered. The scheme can be generalized to any access structure. In this 

scheme, we must have at least t points of a polynomial of t-1 degree to recover it. To share secret s 

among n entities with t threshold (it is called t of n scheme and t≤n) first a random polynomial q(x) of 

t-1 degree is selected which  q(0)=s. Each entity i, that 1≤i≤n, is given (i,q(i)). Lagrange coefficients 

are used to recover the value of s secret. The Lagrange coefficient function can be calculated as 

follows. 

∆𝑖,𝑆(𝑥) = ∏
𝑥−𝑗

𝑖−𝑗𝑗∈𝑆,𝑗≠𝑖             , ∀ 𝑖 ∈ 𝑆                                                                                                (1) 

𝐿𝑖 = ∆𝑖,𝑆(0) = ∏
−𝑗

𝑖−𝑗𝑗∈𝑆,𝑗≠𝑖                                                                                                                 (2) 

where 𝑆 is the desired set of shares of different 𝑡 entities. The following formula is used to recover the 

share value 𝑞(0) = 𝑠.  

𝑞(0) = ∑ 𝑞(𝑖) ∙𝑖∈𝑆 𝐿𝑖                                                                                                                           (3) 

This is a threshold function. Note that AND and OR gates can be generated using this function. 

 
1) Secret sharing polynomials multiplication 
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In this subsection, we will discuss the relations of the multiplication of the shares related to two 

Shamir secret sharing schemes adapted from [10] and [11], i.e., we have two different polynomials for 

two different secrets. We conclude that multiplying these shares is equivalent to multiplying these two 

polynomials. In the following, we will examine this method. Suppose we have n entities P_1.….P_n. 

We have the polynomial q(x) of degree d_1-1  that d_1<n and the secret of this polynomial is 

q(0)=s_1. Some of the secret shares are allocated to the above entities as P_i←(i.q(i))   ;1≤i≤n. This 

relation indicates that the entity P_i receives (i.q(i)). Thus, with d_1  participants from n available 

entities, the secret s_1  can be recovered. Now suppose we have a polynomial p(x) of the degree d_2 

that its secret is p(0)=s_2. Some secret shares are allocated to the above entities as P_i←(i.p(i)); 

1≤i≤n. Now if we multiply the previous shares (i.e., P_i←(i.q(i),p(i))   ;1≤i≤n) then interpolate, it 

equals to the polynomial product of h(x)=q(x),p(x)  with the secret  h(0)=q(0)p(0)=s_1 s_2. The 

degree of the obtained polynomial is d_1+d_2-1. If the condition d_1+d_2<n holds, it can be 

considered that the secret sharing is performed for h(x). So, the secret of the polynomial product will 

be recovered with at least d_1+d_2 participants. 

It should be noted that the degree of the first polynomial is d_1-1, the second one is d_2 and the 

threshold value for their product is d_1+d_2. 

 

A. Bilinear pairing map 

A symmetric bilinear pairing map is a mapping from two elements of one group to an element 

from a second group. So bilinear pairing map, which is shown by e, can be defined as e: 

G_1×G_1→G_T. Discreet logarithm problems must be hard in each group, to ensure security in the 

encryption applications. The main feature of this mapping is its bilinear form. So, if g  is the generator 

of the group G_1and the size of group q is a large prime number and also a,b∈Z_q then we have: 

𝑒(𝑔𝑎, 𝑔𝑏) = 𝑒(𝑔, 𝑔)𝑎𝑏                                                                                                                         (4) 

By this definition, the element e(g,g) will be the generator of group G_T. Therefore, the relation 

e(g.g)≠1  must hold for the function to work properly. 

 

B. Modified decisional bilinear Diffie-Hellman problem 

Suppose that there exists the bilinear pairing map e: G_1×G_1→G_2.  If the vector 

(g^a.g^b.g^c.e(g.g)^z ) is given, distinguishing whether z is equal to ab/c or not, is known as the 

Modified decisional bilinear Diffie-Hellman (MDBDH) problem. We assume that this problem is hard 

and the adversary normally with 1/2+negl probability is able to solve this problem. Here, negl means 

negligible. 
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IV. OUR SCHEME 

As aforementioned, we will provide a scheme in this section that is used for the threshold access 

structure. This threshold value is jointly selected by the authority in the key generation algorithm and 

the sender in the encryption algorithm. The threshold defined by the authority is called the first 

threshold d_1 and the threshold defined by the sender is called the second threshold〖 d〗_2. The first 

threshold is fixed and will not change but the second threshold will be selected for each encryption. 

This allows the threshold to be flexible. Regarding ABE, it is interpreted that each user is defined by a 

set of attributes ω and has the private keys corresponding to these attributes. The sender encrypts the 

message using a number of attributes represented as ω^'. Now if the message receiver is close enough 

to the attribute set of the ciphertext, it is able to decrypt. The criterion for being close to the ciphertext 

attributes is the threshold value. In other words, if the condition |ω∩ω'|≥d¬_1+d_2 holds, the recipient 

user will be able to decrypt. Our proposed technique to increase the threshold value can execute in 

many KP-ABE schemes like [6] and [12] as well. We explain the algorithms of this scheme in the 

following 

Setup (λ,U): The group G_1  that is of p order is selected where g is the group generator. Also, a 

bilinear pairing map e is selected as G_1×G_1→G_T. The set {G_1.G_T.g.e} is known as pp public 

parameters. It is assumed that these parameters are available in the public key PK. The security 

parameter λ is the input of this algorithm. This algorithm randomly selects the values  t_1.….t_|U| 

from the set Z_p. Then it randomly selects the value y from the set Z_p^*. The master secret key is as 

follows. 

𝑀𝑆𝐾: 𝑡1, … , 𝑡|𝑈|, 𝑦                                                                                                                                               (5) 

Moreover, the public keys are published as follows.  

PK: T1 = gt1 , … , T|U| = gt|U| ,  Y = e(g, g)y                                                                                           (6) 

KeyGen (MSK,d_1,ω): This algorithm selects a polynomial function q(x) with one degree less than 

the threshold value  d_1. So, this polynomial is of d_1-1  degree and this polynomial is selected 

randomly so that q(0)=y . The user’s secret key will be as follows. 

𝑆𝐾: 𝐷𝑖 = 𝑔
𝑞(𝑖)

𝑡𝑖  ; 𝑖 ∈ 𝜔                                                                                                                            (7) 

Enc (M, PK, d_2و ω'): This algorithm chooses a random value s from the set Z_p^*. Then a 

polynomial p(x) of d_2 degree is selected so that the relation p(0)=s holds. The ciphertext will be as 

follows. 

𝐸 = {𝑑2, 𝜔′, 𝐸′ = 𝑀, 𝑌𝑠, {𝐸𝑖 = 𝑇𝑖
𝑝(𝑖)

}
𝑖∈𝜔′

}                                                                                         (8) 

Dec (E, SK): Suppose that the receiver user has the secret key SK associated with the set of attributes 

ω. This receiver can decrypt E if the condition |ω∩ω'|≥〖d_1+d〗_2 holds. If it does not hold, the 

algorithm output ⊥ . For decrypting, the receiver selects the set S including 〖d_1+d〗_2 members from 
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|ω∩ω'|. The decryption will be as follows. 

𝑀 =
𝐸′

∏ (𝑒(𝐷𝑖,𝐸𝑖))
∆𝑖,𝑆(0)

𝑖∈𝑆

                                                                                                                           (9) 

n equation 9, ∆𝑖,𝑆(0)  is the Lagrange coefficient. The correctness of relation 5 to recover the message 

M can be proved as follows. 

𝑀 =
𝐸′

∏ (𝑒(𝐷𝑖,𝐸𝑖))
∆𝑖,𝑆(0)

𝑖∈𝑆

=
𝑀,𝑒(𝑔,𝑔)𝑦𝑠

∏ (𝑒(𝑔

𝑞(𝑖)
𝑡𝑖 ,𝑔𝑝(𝑖),𝑡𝑖))

∆𝑖,𝑆(0)

𝑖∈𝑆

  

     =
𝑀,𝑒(𝑔,𝑔)𝑦𝑠

∏ (𝑒(𝑔,𝑔)𝑞(𝑖),𝑝(𝑖))
∆𝑖,𝑆(0)

𝑖∈𝑆

=
𝑀,𝑒(𝑔,𝑔)𝑦𝑠

𝑒(𝑔,𝑔)∑ 𝑞(𝑖),𝑝(𝑖)∆𝑖,𝑆(0)𝑖∈𝑆
=

𝑀,𝑒(𝑔,𝑔)𝑦𝑠

𝑒(𝑔,𝑔)𝑦𝑠 = 𝑀  

As you can see, if the condition |ω∩ω'|≤d_1+d_2 does not hold, the set S cannot be defined. 

Therefore, it is not possible to recover the message using relation 9. 

 

V. SECURITY AND EFFICIENCY EVALUATION   

In this section, we will prove our scheme security by using the selective security model and assuming 

the hardness of the modified bilinear decision Diffie-Hellman problem. Also, we will compare our 

scheme with the [1] scheme and conclude that our scheme’s computational complexity and 

communication overhead are almost the same as [1]. 

 

A. Security proof 

We assume that the challenger wants to answer the modified bilinear decision Diffie-Hellman 

problem by having the parameters of (A.B.C.Z)=(g^a.g^b.g^c.e(g.g)^z ), We also assume that there is 

an adversary 𝒜 that can break our scheme with 1/2+ε probability where ε is non-negligible. The 

challenger must use the adversary response to solve the modified bilinear decision Diffie-Hellman 

problem. If this is possible, considering that it is a difficult problem and cannot be solved, we will 

conclude that there is not an adversary like 𝒜 to break our scheme. To this end, we run the phases of 

the selective security model. 

Initialization: Adversary 𝒜 first identifies the attribute set of challenge α  and the value of d_2. 

Setup: the challenger simulates the setup algorithm for the adversary and sets Y=e(g.A)=e(g.g)^a, 

Additionally, it selects the random value β_i∈Z_p for each i∈α and  sets〖 T〗_i=C^(β_i )=g^(cβ_i ). It 

selects the random value ω_i∈Z_p  for each i∈U-α and sets T_i=g^(ω_i ). So, the public parameters 

are selected and given to the adversary. 

Phase 1: The adversary selects attribute set γ  that |α∩γ|<d_1+d_2 and sends it to the challenger. 

The challenger should generate secret keys related to γ. We will first define the sets Γ,Γ' and S for 

each attribute set γ  that |α∩γ|<d_1+d_2 as follows: 



191                                                                                      Fuzzy Identity Based Encryption with a flexible threshold value 
 

 

𝑆 = Γ′ ∪ {0} and Γ ⊆ Γ′ ⊆ 𝛾;  |Γ′| = 𝑑1 − 1 and Γ = 𝛾 ∩ 𝛼  

Challenger generates private keys 𝐷𝑖 for all 𝑖 ∈ Γ′ as follows: 

• If 𝑖 ∈ Γ: the random value 𝑠𝑖 ∈ ℤ𝑝 is selected and 𝐷𝑖 = 𝑔𝑠𝑖 is set. 

• If i∈Γ'-Γ: the random value λ_i∈Z_p is selected and D_i=g^(λ_i/ω_i ) is set. 

In order to select a polynomial q(x) of degree〖 d〗_1-1, we can randomly select d_1-1 points and 

q(0)=a is set as well. According to our scheme and the above, we have q(i)=cβ_i s_i  for i∈Γ and 

q(i)=λ_i for i∈Γ-Γ'. 

The challenger, regarding that it knows the discreet logarithm associated with T_i  ;i∉α (i.e.,ω_i), 

can do the following to calculate the key D_i;i∉Γ'. 

𝑖 ∉ Γ′: 𝐷𝑖 = (∏ 𝐶

𝛽𝑖𝑠𝑖Δ𝑗,𝑆(𝑖)

𝜔𝑖𝑗∈Γ ) (∏ 𝑔

𝜆𝑖,Δ𝑗,𝑆(𝑖)

𝜔𝑖𝑗∈Γ′−Γ ) 𝐴
Δ0,𝑆(𝑖)

𝜔𝑖                                                            (10) 

The challenger by using interpolation was able to calculate 〖D¬_i=g^(q(i)/t_i ):i∉Γ^'〗_iwhere q(x) 

was created using d_1-1 value of D_i;i∉Γ' and one value of A=g^a. So, the private keys 

corresponding to γ were generated. 

Challenge: The adversary selects the two messages M_0 and M_1 and sends them to the 

challenger. The challenger selects the random bit v and encrypts the message M_v with the challenge 

attributes α as follows. 

𝐸 = {𝑑2, 𝜔′, 𝐸′ = 𝑀𝑣, 𝑍, {𝐸𝑖 = 𝐵𝑝′(𝑖)𝛽𝑖}
𝑖∈𝜔′} 

If 𝑧 =
𝑎𝑏

𝑐
  we assume that 𝑟′ =

𝑏

𝑐
 and we have 𝐸′ = 𝑀𝑣 , 𝑒(𝑔, 𝑔)

𝑎𝑏

𝑐 = 𝑀𝑣 , 𝑒(𝑔, 𝑔)𝑎𝑟′ = 𝑀𝑣 , 𝑌𝑟′ and 

𝐸𝑖 = 𝐵𝑝′(𝑖)𝛽𝑖 = 𝑔𝑝′(𝑖)𝑏𝛽𝑖 = 𝑔𝑝′(𝑖)
𝑏

𝑐
𝑐𝛽𝑖 = 𝑔𝑝(𝑖)𝑐𝛽𝑖 = 𝑇𝑖

𝑝(𝑖)
. 

In the above relation, 𝑝(𝑥) =
𝑏

𝑐
𝑝′(x)=r'p'(𝑥) holds where 𝑝(𝑥) is a polynomial of 𝑑2 degree and 

𝑝(0) = 𝑟′. So, the challenger has been able to simulate the ciphertext for 𝑀𝑣. 

Now if z is a random value, E^' will be completely random. 

Phase 2: Phase 1 is repeated. 

Guess: in this phase, the adversary guesses bit v'. If z=ab/c, the adversary’s success probability (i.e., 

v^'=v) will be 1/2 + 𝜖 because we assumed that the adversary with 1/2 + 𝜖 probability and non-

negligible 𝜖 can identify the encrypted bit v for our scheme. If z is random, the adversary’s success 

probability (i.e.,v^'=v)) will be 1/2. 

Considering that the challenger receives the value〖 v〗^', if v^'=v, it is assumed that z=ab/c holds 

and if v^'≠v, it is assumed that z is random. Thus, the challenger can solve the BDMDH problem. 

Now we calculate the success probability of the challenger (P(Ch)). 

P(𝐶ℎ) =
1

2
P (𝑣′ = 𝑣|𝑧 =

𝑎𝑏

𝑐
) +

1

2
Pr(𝑣′ = 𝑣|𝑧 ∈𝑟 ℤ𝑝) =

1

2
(

1

2
+ 𝜖) +

1

2
(

1

2
) =

1

2
+

𝜖

2
      

Since we assume that ϵ is non-negligible, ϵ/2 will be non-negligible as well. Then the challenger 

can solve the BDMDH problem. But this contradicts our assumption since we assume that no 



Journal of Communication Engineering, Vol. 10, No.2, January-June 2021                                                  192  

 

 

algorithm can break this problem. So, there is also no adversary like 𝒜 to be able to break our 

scheme. 

 

B. Comparison with previous scheme 

In the proposed scheme, the sender can interfere with the threshold value or access policy unlike 

previous ones (e.g., [1], [6], and [12]).  The proposed scheme captures this feature without applying 

more complexity compared to previous schemes. In this subsection, we show that using of secret 

sharing polynomials multiplication technique does not force any extra computation and 

communication overhead compared to the original version. 

We compare our scheme with [1] (and also [6] and [12] by supposing that our technique is applied 

to them) in four algorithms, i.e., setup, key generation, encryption, and decryption. We consider the 

computational complexity and the ciphertext size, which is directly related to communication 

overhead, in our comparison.  

Setup: The algorithm of setup in our scheme is exactly the same as the algorithm of setup in [1] and 

[6] (and very similar to [12]). So, the computation complexity and the size of the public key are the 

same. The public key in [12] also includes extra two Hash functions H_1 and H_2. 

KeyGen: The algorithm of key generation in our scheme is exactly the same as the algorithm of 

setup in [1] (and [6], and [12] with some minor differences). So, the computation complexity and the 

size of the secret key are the same. 

Enc: The differences between encryption algorithm in our scheme and the schemes of [1],  [6], and  

[12] are that there is extra d_2 in equation (4) and also is computed {E_i=T_i^(p(i)) }_(i∈ω^' ) instead 

of {E_i=T_i^s }_(i∈ω^' ). This means that the communication overhead (size of ciphertext) of our 

scheme has an extra element named d_2. This can be managed by adding at most 8 bits in the 

ciphertext. Because this element represents the second threshold value which is a small number. So, 

we can ignore it. Also, the computational complexity of the encryption algorithm in our scheme is the 

same as mentioned schemes. Note that in our scheme Enc algorithm should select a polynomial p(x) 

and also computes {p(i)}_(i∈ω^' ) which these computations are negligible. So, we can claim that the 

computational complexity and communication overhead are almost the same as mentioned schemes. 

While in [12] the sender computes E^'=H_2 (Y^(s,H_1 (m))) instead of E^'=M,Y^s, but the 

computation complexity and the size of ciphertext are the same as the proposed scheme. 

Dec: The decryption algorithm of our scheme is exactly the same as the decryption algorithm of [1] 

and the decryption node algorithm in [6], and  [12] supposing that d=d_1+d_2. This affects choosing 

of the intersection set S. However, the decryption operations are the same. 

Therefore, we can conclude that using the secret sharing polynomials multiplication technique does 

not force extra computation complexity, size of keys, and ciphertext. 
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VI. CONCLUSION 

In this paper, we have proposed the idea of multiplication of the shares associated with Shamir’s 

secret sharing scheme to make the threshold value flexible in FIBE and KP-ABE schemes. In this 

regard, we presented a new FIBE scheme with a flexible threshold. Considering that in our scheme 

the access structure (Threshold gate) is applied to both the key and the ciphertext. In fact, one 

threshold value is applied in keys and another one is applied in the ciphertext. In the other words, part 

of the threshold value is determined by the authority in the key generation algorithm and the other part 

is determined by the sender in the encryption algorithm. The threshold selected by the authority is 

always fixed but the threshold associated with the sender is changeable for each encryption. 

Therefore, our scheme is more flexible than Sahai and Waters’s scheme [1]. The total threshold value 

is the sum of them. To this end, we have used the idea of multiplication of the shares associated with 

Shamir’s secret sharing scheme. This flexibility does not lead to any additional computational and 

communication overhead (other than the value d_2 in the ciphertext) compared to the scheme [1]. In 

other words, our scheme, while providing a flexible scheme, has the same computational and 

communication overhead as the previous one [1]. We also look at the drawbacks of the scheme [1] 

that may occur in a network. Our scheme solved these problems. These flexibility techniques and 

dual-policy can also be applied to improve the existing KP-ABE scheme e.g., [6], [12], or others. 

Furthermore, we compared the computation complexity, size of keys, and the size of ciphertext of our 

scheme with [1] and also with [6] and [12] by this assumption that the idea of multiplication of the 

shares is applied to them. 
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