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Abstract- The rapid proliferation of fifth-generation (5G) technology 

has resulted in a wide range of applications, posing challenges in 

managing network resources effectively and efficiently. To address these 

challenges, network slicing (NS) and Fog-Radio Access Networks (F-

RAN) have emerged as key technologies, enabling the creation of 

isolated virtual networks on shared physical infrastructure to support 

high-bandwidth and low-latency communication. However, allocating 

network resources to latency-sensitive applications like self-driving cars 

and remote surgery, while ensuring a quality experience, is complex due 

to stringent latency requirements and limited availability. In this paper, 

we propose a novel approach, leveraging the Q-learning algorithm, 

specifically the Approximate Reinforcement Learning for dynamic 

resource allocation (RA-ARL), in the context of 5G environments. Our 

modified algorithm takes into account crucial network attributes, 

introduces innovations such as service type classification based on 

latency sensitivity, and considers time-varying resource conditions and 

service demands. We propose an RL model to optimize network utility, 

focusing on the F-RAN model. Our experimental results demonstrate 

the effectiveness of ARL-RA in terms of convergence, resource 

utilization, and the ability to handle user request rejections. This work 

contributes to the advancement of efficient and effective resource 

allocation in dynamic 5G networks, particularly for latency-sensitive 

applications with stringent quality requirements.  
 

Index Terms- Resource allocation, 5G, Approximate reinforcement learning, F-RAN, 

Network slicing. 
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I. INTRODUCTION 

The emergence of 5G technology has led to an increase in the number and diversity of applications 

that can be supported by wireless networks [1]. However, managing network resources in a way that 

ensures optimal performance and efficient use poses challenges. Network slicing (NS) is a key 

technology that addresses these challenges by creating isolated virtual networks on top of shared 

physical infrastructure [2]. 

Fog-Radio Access Network (F-RAN) is a network architecture that has emerged as a solution to 

address the challenges posed by the emergence of 5G technology. F-RAN integrates the principles of 

fog computing and radio access networks to create a distributed computing environment that can 

provide low-latency and high-bandwidth communication to end users [3, 4]. 

One of the significant advantages of NS is its ability to provide low-latency services, which are 

essential for emerging applications such as self-driving cars, remote surgery, and Internet of Things 

(IoT) services. However, allocating of network resources. Ensuring the quality of experience (QoE) 

for all services while maintaining resource efficiency is a complex problem [5]. 

Addressing these challenges, machine learning (ML) methods have been proposed for dynamic 

resource management, including Slice Admission Control (SAC), Network Slicing (NS), and 

Resource Allocation (RA). However, most of these methods rely on deep learning (DL), deep 

reinforcement learning (DRL), and reinforcement learning (RL), which may not be suitable for the 

dynamic nature of 5G networks with varying parameters [6, 7]. DL-based approaches require large 

labeled datasets to train the models. RL-based methods may not be suitable for large and continuous 

environments, and DRL-based techniques require complex designs for freezing data and transferring 

branches of data for training the machine [8]. 

As we know, the core of many machine learning algorithms is the Q-learning algorithm. This 

algorithm is widely used due to its structure and adaptability to many desecrate environments. 

However, it is necessary to modify the algorithm's functions to use this algorithm in more advanced 

environments such as the 5G environment [9]. 

In this paper, we propose using the Q-learning algorithm named Approximate Reinforcement 

Learning for dynamic resource allocation (RA-ARL) in the 5G environment. To do so, we modify the 

algorithm's functions by extracting critical network features and weighing them accordingly so that 

the algorithm only learns the weight of each feature by performing actions in the environment and 

updates them by removing extra and unnecessary calculations. Additionally, we introduce several 

significant innovations for RA in F-RAN, including a comprehensive network model that takes into 

account nodes located across multiple layers, classification of service types based on latency 

sensitivity, and consideration of time-varying resource situations and diverse service requirements. To 

optimize network utility, we propose an RL model that identifies the optimal strategy and apply our 

proposed method to the F-RAN model. 
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The rest of this work is organized as follows. We investigate the literature review in the next 

Section. The system model is described in Section 3. In Section 4, we present RL then present how to 

overcome the weaknesses of RL through ARL and explain how to apply the proposed method to our 

model. The simulation results are summarized in Section 5. Finally, sec 6 concludes 

 

II. LITERATURE REVIEW 

Resource allocation is a crucial aspect of 5G network management that has been extensively 

researched in recent years [10]. Traditional approaches, such as QoS-based, game theory, and 

optimization methods, have been proposed for resource allocation in these networks, but they face 

challenges in highly dynamic and heterogeneous environments. To address these challenges, various 

intelligent techniques, including reinforcement learning, machine learning, and hybrid approaches, 

have been proposed. 

Several articles have focused on using DRL algorithms to solve the RA problem in Fog-RAN. Al-

Abiad et al. [11] used RL and cross-layer network coding for efficiently pre-fetching requested 

contents to the local caches and delivering these contents to requesting users in a downlink F-RAN 

with device-to-device (D2D) communications. In [12], the authors formulated the RA problem in the 

Markov decision problem (MDP) model and employed RL methods to solve it by consecutively 

assigning the Fog-Node's (FN) limited resources to IoT use cases of heterogeneous latency 

requirements. Khumalo et al. [13] investigated RM in F-RAN and presented the RL algorithm as a 

dynamic and autonomous RA method, proposing an algorithm based on Q-learning. 

Xiang et al.  [14] Proposed a DRL algorithm for content caching and mode selection to maximize 

reward performance under the dynamical channel and cache status. Authors [15]  presented a DRL-

based method for smart decisions on user equipment communication modes and processors' on-off 

states, optimized subsequently, and targeting to minimize long-term system power consumption under 

the dynamics of edge cache states. The authors of [16] addressed the slicing problem by allocating 

limited F-RAN resources to vehicular and smart city users with heterogeneous latency and computing 

demands in dynamic environments through an NS model based on a cluster of FNs coordinated with 

an edge controller to efficiently use the limited resources at the network edge. 

Zhou et al. [17] proposed a DRL-based approach for optimizing cache resources in F-RAN by 

intelligently allocating the limited cache spaces of F-APs to different coded files based on the 

historical requests of the user. Article [18] proposed a DRL-based joint cache and power allocation in 

F-RANs to learn the user's requirements and make a smart decision for caching suitable content and 

allocating a significant amount of power resources. In [19], the authors used the RL method and 

proposed a Double Deep Q-Learning (DDQL)-based scheduling algorithm using the target network 

and experience replay techniques to minimize long-term service latency and computation cost under 
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resource and deadline constraints. 

The paper[20] focuses on minimizing energy consumption in fog computing by efficient task 

scheduling. It proposes the Binary KHA-AHA (BAHA-KHA) approach, combining the Krill Herd 

Algorithm (KHA) and the Artificial Hummingbird Algorithm (AHA). The goal is to minimize 

resource usage, task communication, and overall energy consumption. The study evaluates the 

BAHA-KHA model on different workflows and compares it with other algorithms. Results show that 

BAHA-KHA outperforms other algorithms, reducing makespan by 18% and energy consumption by 

24% compared to GA. 

In this article[21], the focus is on tackling the difficulties encountered in the field of IoT, 

specifically related to limited processing power, high latency, traffic, and energy consumption. To 

address these issues, a new architecture is proposed, integrating Fog Computing with the Moth-Flame 

Optimization algorithm and Opposition-based Learning for efficient resource allocation and job 

offloading within the IoT. The architecture comprises sensors, controllers, and fog servers, while the 

second layer adopts the subtask pool method for offloading tasks and utilizes the OBLMFO 

combination for resource distribution. Moreover, the second layer leverages blockchain technology to 

ensure the accuracy of transaction data. 

In the article [21], various challenges are discussed related to IoT, including the diverse nature of 

IoT infrastructures, limitations in communication, transmitting data through multiple hops, and the 

limited energy resources in IoT devices. To address these challenges, a novel protocol is proposed for 

efficient data routing in IoT by taking into account energy considerations. The protocol combines the 

power of ML with the innovative Heat Transfer Optimizer algorithm. 

In the article [21], various challenges are discussed related to IoT, including the diverse nature of 

IoT infrastructures, limitations in communication, transmitting data through multiple hops, and the 

limited energy resources in IoT devices. To address these challenges, a novel protocol is proposed for 

efficient data routing in IoT by taking into account energy considerations. The protocol combines the 

power of ML with the innovative Heat Transfer Optimizer algorithm. 

Despite the proposed method being a practical and flexible approach for various applications, this 

article shares similarities with our previous work[22] in terms of structure and architecture. However, 

there are several technical and methodological differences between these two articles, which are 

highlighted below: 

1. Our focus in this article is on resource allocation, whereas the previous work was centered 

aroundslice acceptance control and preventing income degradation. 

2. In this article, we study five types of service types, whereas in the previous article, services were 

categorized into delay-sensitive and tolerance-based, and the acceptance was based on those 

categories. 

3. The considered algorithm weight learning features differ between the two articles. 
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Fig. 1 System Model. 

 

4. The simulation parameters and extracted graphs exhibit significant differences between the two 

articles. 

III. SYSTEM MODEL AND PROBLEM STATEMENT 

As shown in Fig. 1, we propose a system model that considers the limited resources of F-RAN for 

delivering network functionalities at the edge. The system model includes F-RAN connected to the 

central office (CO) via a fronthaul link [23].  

The baseband processing functions (BPF) are separated from the base stations (BS) and run on 

special purpose processors (SPP) at CO. Additionally, the virtualized packet processor (vPP) function 

and packet  

gateway (PGW) are virtual network functions (VNFs) running on general-purpose processors 

(GPPs). Assuming two types of single-antenna user equipment UEs: the eMBB UEs Z_0 and the 

URLLC and mMTC UEs〖 Z〗_1. The Z_0demand transfers high data rates while the UEs Z_1need 

delay guaranteed data transmission. 

To serve these services, ARL trained in the cloud server will provide the corresponding RA. As 

shown in Fig. 1, service items are situated between two groups of types (e.g., AR, WPC, RS, etc.), 

and their required infrastructures must be provided in either exclusively F-RAN or jointly F-RAN and 

CO. Table 2 demonstrates the sensitivity of cases to delay and serving level. Users submit a request to 

the controller to 
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create a slice, and the controller decides whether to serve the user locally at the edge using its 

computing and processing resources or refer it to the CO. A sequence of requests is defined as𝑅𝑡 =

{𝑅0,0, 𝑅0,1, … , 𝑅𝑎,𝑏 , …,} where 𝑅𝑎,𝑏 signifies the jth request of user 𝑎 and is specified as 𝑅𝑎,𝑏 = {𝜈𝑎,𝑏, 

𝛫𝑎,𝑏 , 𝜗𝑎,𝑏}, which represents the data size, the required resources, and the maximum tolerable time, 

respectively. There exists a set of users 𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚 }at any given time slot t, where M is 

the number of users.  

The total service time for a slice 𝓈𝑖,𝑗  includes the remaining time 𝓈𝑑
𝓇for the slice running in the 

selected node, 𝓈𝑖,𝑗
𝑇  the transmission time to offload the slice to the cloud node, 𝓈𝑑

𝑄
 the waiting time in 

the queue before service, and 𝓈𝑖,𝑗
𝛫  the computing time. The amount of resource usage of each device 

and the available links are shown by𝑈𝑇 = {𝑢𝑑1,𝑡, 𝑢𝑑2,𝑡, … , 𝑢𝐷𝑛,𝑡, 𝑢𝐿𝑛,𝑡}, where 𝑢𝐷𝑛,𝑡indicates the 

amount of use of the Nth server from device 𝐷, and 𝑢𝐿𝑛,𝑡 indicates the used capacity of the fronhaul 

links.  

The objective of the system is twofold: 1) to maximize the number of served slices, and 2) to 

maximize resource utilization.The optimization problem can be expressed as equations 7 and 8 in the 

article [22]. 
 

Algorithm 1, Q-learning for RA: 
# Define the environment 

n_states = # Number of possible states 

n_actions = # Number of possible actions 

p = # Transition probability matrix (shape: n_states x n_actions x 

n_states) 

r = # Reward matrix (shape: n_states x n_actions) 

# Initialize Q-values 

Q = np.zeros((n_states, n_actions)) 

# Hyperparameters 

gamma = # Discount factor 

alpha = # Learning rate 

n_episodes = # Number of episodes to run 

# Q-learning algorithm 

for episode in range(n_episodes): 

    s = # Initial state 

    done = False 

whilenot done: 

a = # Choose action using epsilon-greedy policy 

        s_prime = # Sample the next state from the transition 

probability matrix 

        r_t = r[s, a] 

if s_prime == # Terminal state: 

            Q[s, a] += alpha * (r_t - Q[s, a]) 

            done = True 

else: 

            max_Q_prime = np.max(Q[s_prime, :]) 

            Q[s, a] += alpha * (r_t + gamma * max_Q_prime - Q[s, a]) 

            s = s_prime 
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IV. PROPOSED METHODE 

In this section, we present a model-free approach known as Q-learning, which is used to find an 

optimal policy for the Markov decision process (MDP) model. We further discuss how this method 

can beimproved by approximate reinforcement learning for RA. 

 

A. Q-learning algorithm 

The Q-learning algorithm is an efficient machine-learning technique that follows the MDP model 

and uses dynamic learning via the train-validation method to find the optimum policy〖 π〗^*. The 

MDP model defines sample paths in which state-action pairs are represented by a tuple (S,A,p,r), 

consisting of possible states S, possible actions A, transition probability p from state S to s', and the 

reward r obtained after executing an action. The reward is calculated as the sum of bandwidth G.BW, 

resource utility j.RE, and quality of experience e.QoE: 

 

In [20], the matrix 
H

eF  has been used to transform element space to beamspace. The UCA steering 

vector of (4) is mapped to the VULA array through this beamformer, which is defined by 

𝑅 =  𝐺. 𝐵𝑊 + 𝒿. RE + ℯ. 𝑄𝑜𝐸                                                                                                                        (1) 

 

For this work, an agent is designed in the cloud controller that observes the environment and trains 

it to make decisions. However, this method can achieve the optimal strategy when environment 

dimensions are small and actions are discrete. The process of executing the Q algorithm follows 

Algorithm 1.To gain a more comprehensive understanding of the agent's functioning in the Q-learning 

algorithm, we suggest referring to the article[24]. 

ARL for RA 

The wireless network environment is vast and full of random events. Using conventional Q-learning 

can cause the Q-value table to explode and lack convergence in the exploration and exploitation 

phases. To address this issue, we have developed a Q-learning algorithm and introduced the ARL 

algorithm for RA. The core idea of our proposed method is to obtain Q(s,a) from a linear combination 

of features: 

Q (s, 𝑎; w) =  ∑ fi(s, 𝑎)wi
n
i=1            (2) 

We extract and define significant environment features as f, and w is the variable that updates the 

feature's weight with each action. The agent must learn the weights for the features extracted from the 

model states. 
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We define a feature 𝑓(𝑠, 𝑎)over the state and action pairs that yield a vector 

(𝑓0(𝑠, 𝑎). 𝑓1(𝑠, 𝑎). … . 𝑓𝑖(𝑠, 𝑎) ….   𝑓𝑛(𝑠, 𝑎)) of feature values. The weights are updated according to 

the following rules: 

𝑉𝑎𝑟𝑖𝑒𝑑 𝑐𝑎𝑠𝑒: (𝑠, 𝑎, 𝑠′, 𝑟) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disagreement = [r + γ max
a′

Q (s′, a′) =] − Q(s, a) 

wi ← wi  + α . [disagreement]  ×  fi(s, a) 

wi ← wi  +  α . (r + γ max
a′

Q (s′, a′) −  Q(s, a)) ×  fi(s, a)        (3) 

Algorithm 2 outlines the operation of our proposed method. To use ARL for RA, we must first 

identify the associated features and weights. For this purpose, we measure the capacities of computing 

resourcesand FHL transfer to containers and number their values according to standardization. 

Additionally, one counter-deployment into each container indicates the amount of used and remaining 

resources.Based on these measures, we define four suitable features for our work: 

▪ (𝑓1) Computational resource capacity: This feature represents the total capacity of the 

computational system, and if it is higher, it provides more processing power for the system. 

▪ (𝑓2) Data transfer rate: The data transfer rate between cloud computing and edge computing 

systems can also be extracted as an environmental feature. 

Algorithm 2, ARL for RA: 
1. Define the significant environmental features and their weights: 

   - The feature function f(s, a) outputs a vector of feature values 

(f_1, f_2... f_n) for a given state-action pair. 

   - The weight vector w updates with each action taken by the agent. 

2. Initialize the Q-value table arbitrarily. 

3. Set the learning rate α and discounting factor γ in the range [0, 1]. 

4. For each episode, repeat: 

   - Choose an action a with probability ε. 

   - Observe the new state s' and reward r. 

   - Compute the difference between the expected and actual 

rewards:  

     difference = r + γ * max(Q(s', a')) - Q(s, a) 

   - Update the weight vector for each feature:  

     w_i ← w_i + α * difference * f_i(s, a) 

   - Update the Q-value for the current state-action pair: 

Q(s, a) ← Q(s, a) + α * difference 

5. Update the policy based on the new Q-value table. 

The ARL algorithm for RA addresses the exploding Q-value table and 

lack of convergence issues associated with conventional Q-learning 

methods in wireless networks. By using a linear combination of 

significant features extracted from the environment, the proposed method 

reduces the dimensionality of the problem and enhances the agent's 

learning efficiency. 
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▪ (𝑓3) Satisfaction: This feature indicates how satisfying the system is for accepting user 

requests and needs. It can be measured by different satisfaction metrics like Quality of 

Service (QoS). 

Table 2: Classification of use cases 

Applications Bandwidth Latency Executor nodes 

Service type 1 ≤ 5 Mbps ≤ 5 MS Fog nodes 

Service type 2 3-7 Mbps ≤ 10 MS Fog nodes 

Service type 3 ≤ 10 Mbps 50 ms-1s Fog nodes & CO 

Service type 4 15~ Mbps ≤ 5 s Fog nodes & CO 

Service type 5 ≤  100 Mbps ≤ 5 s Fog nodes & CO 

 

▪ (𝑓4) User demand level: The level of user demand for using the system and processing their 

data can be considered as a significant environmental feature. It can be measured by the number 

of 

▪ requests or amount of data that users need to process.  Therefore, Initial weights are given for 

the 4 features that are: 

Q(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + 𝑤2𝑓2(𝑠, 𝑎) + 𝑤3𝑓3(𝑠, 𝑎) + 𝑤4𝑓4(𝑠, 𝑎)         (4) 

 

V. SIMULATIONANDNUMERICALANALYSES 

This section discusses the evaluation of an ARL-RA-based approach using PyTorch, an open-source 

ML framework that accelerates the transition from research prototyping to production deployment. 

Libraries such as TensorFlow and NumPy were also utilized. The convergence rates of ARL and DRL 

were compared using two F-RANs (with 2.60 GHz power computations) and one CO (with 3.6 GHz 

power computations), each with five different types of slices with a bandwidth of 40-MegaHertz. 

Table 2 provides the classification of the use cases based on service type, bandwidth, latency, and 

executor nodes.In Fig. 2, the reward variation relative to the epoch index is illustrated, showing that 

regardless of the value of α, the ARL converged after 200-400 epochs while the DRL had not yet 

shown signs of convergence even at 1000 epochs. Therefore, it can be concluded that the ARL 

converges more quickly than the DRL. Additionally, the performance of the equal-allocation policy 

was assessed and compared to the resource allocation based on the number of slices, demonstrating 

that ARL is executed more efficiently than the alike-allocation policy.In Fig 2, an illustration of the 

reward variation concerning the epoch index is presented. This function is defined by equation (14). 

Notably, regardless of the value assigned to α, the ARL may converge after 200-400 epochs. In 

contrast, the DRL displays no sign of convergence until 1000 epochs have passed. Hence, it can be 

safely inferred that the ARL converges more rapidly than the DRL.Furthermore, Fig. 2 presents the 

performance of the equal allocation policy, where resources are allocated based on the number of 

slices. The results indicate that the ARL outperforms the equal allocation policy in terms of 
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efficiency.In our scenario, the usage of CO resources depends on the accepted slice in the fog 

resources, given the nature of the services listed in Table 2. Specifically, if the controller only accepts 

slices of type 1 and 2 that need to be processed at the edge, it may result in cloud and communication  

 

Fig. 2. The convergence rate of the ARL-RA and DRL 

 

resources being wasted and remaining idle. Additionally, the maximum number of users who can 

be served in the best possible case is limited to 25-30, depending on the number of available 

resources. As mentioned before, CPU processing is performed at the edge nodes, while the fronthaul 

link is used for communication among F-RAN and CO. It is essential to ensure that the number of 

resources used is proportional to different resource types. Fig.3 depicts the usage rate of edge 

resources. If resource management is random and without a strategy, the number of resources used 

will increase exponentially with an increase in the number of users. For instance, accepting 16 users 

results in 100 of their resources being consumed in this field. However, the proposed ARL-RA 

method for serving 20 users has used approximately 83% of the resources, indicating that our method 

accounts for the overall network's resource consumption. The ARL-RA method not only ensures 

efficient resource utilization but also increases user satisfaction by optimizing the allocation of 

resources based on their demand. The proposed approach achieves this by using ARL algorithms that 

dynamically update the weights of feathers to adapt to future demands, ensuring that the available 

resources are utilized optimally while meeting the users' requirements. This dynamic optimization is 

particularly important in scenarios where the user population varies over time, making it challenging 

to allocate resources adequately.Moreover, the ARL-RA method takes into account the entire 
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network's resource consumption, including both edge and central office resources, and ensures that the 

usage rate of these resources is proportional to their availability. By doing so, the proposed approach 

reduces waste and idle time, leading to better resource utilization and a more efficient network.  

 

Fig. 3. Resource utilization. 

 

 

Fig. 4. Resource utilization. 
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Fig. 5. Resource utilization. 

 

 

Fig. 6. The possibility of rejecting users' requests. 
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Fig. 7. The possibility of rejecting users' requests. 

 

Overall, the ARL-RA method outperforms random resource management in terms of resource 

utilization, user satisfaction, and network efficiency, making it a promising approach for managing 

fog and cloud resources in a dynamic network environment. Our assertion is supported by the data 

presented in Figs. 4 and 5, which indicate that the proposed method results in significantly lower 

traffic volume directed toward the CO compared to both the random and DRL methods. We have 

conducted an assessment of the likelihood of user rejection based on the type of service they receive. 

Our findings, as demonstrated in Figs. 6 and 7, indicate that the acceptance probability of users using 

the random method is contingent on their access to resources. Each user who accesses these resources 

creates a slice without considering the distribution of resource consumption in other areas, resulting in 

an increased possibility of rejecting delay-sensitive services with an increasing number of applicants. 

In contrast, intelligent methods exhibit more intelligent behavior than the random approach. 

 

VI. CONCLUTION 

This study presents a novel approach for intelligent resource allocation in 5G mobile networks using 

Network Slicing (NS) technology and Fog-radio access networks (F-RAN). The proposed method, 
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named Approximate Reinforcement Learning (ARL), leverages reinforcement learning techniques to 

extract and evaluate critical network features, outperforming conventional Q-learning algorithms. 

ARL-RA exhibits promising performance in terms of convergence, resource utilization, and the 

ability to handle users' request fields efficiently. 

Furthermore, this research contributes to the field of academics and practices by offering insights 

into intelligent resource allocation techniques in 5G networks. The utilization of Network Slicing and 

Fog-RAN optimizes resource allocation, improves network efficiency, and enhances user experience. 

The findings of this study can serve as a foundation for future research in this area. 

Moving forward, it is recommended to explore the integration of multiple objectives in the resource 

allocation process to cater to diverse user demands. This can involve considering factors such as 

latency, energy efficiency, and quality of service requirements. Additionally, the scalability of the 

proposed approach should be investigated to ensure its effectiveness in large-scale networks with a 

significant number of users. Moreover, assessing the impact of various network conditions on the 

performance of the proposed approach would further enhance its applicability in different scenarios. 
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