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Abstract- This paper presents a data focusing method (DFM) to image 

extended targets using the multiple signal classification (MUSIC) 

algorithm. The restriction on the number of transmitter-receiver 

antennas in a microwave imaging system deteriorates profiling an 

extended target that comprises many point scatterers. Under such 

situation, the subspace-based linear inverse scattering methods, like the 

MUSIC algorithm, fail to image the extended targets. In proposed 

method, the DFM divides imaging region into several sections and maps 

the scattered data to each section by applying a linear transformation. 

Being weakened clutters from other sections, the resultant focused data 

contains, mostly, the responses of scatterers inside the desired section. In 

this way, the number of scatterers is reduced comparing to the number 

of transmitter-receiver antennas and the requirement for the MUSIC is 

satisfied. Using experimental data, we show that the DFM in 

conjunction with the MUSIC is successful in microwave imaging of 

extended targets. 
 

Index Term- Microwave imaging, MUSIC algorithm, Focusing method, Extended 

target. 

 

I. INTRODUCTION 

Microwave imaging (MI) is used to determine the spatial dielectric profile of an object from the 

electromagnetic field that the object scatters under illumination from various directions. Among the 

methods used for the profile reconstruction in an MI system, the MUSIC algorithm is a promising 

method for quasi real-time imaging [1]-[7]. This algorithm exploits the orthogonality of the signal and 

noise subspaces by employing singular value decomposition (SVD) of a so-called multi-static 

response (MSR) matrix. The MUSIC algorithm locates the point scatterers from the peaks of the well-

known pseudo spectrum. 

In computing the pseudo spectrum, the number of point scatterers is required to be less than the 

number of transmitters and receivers. If the number of scatterers exceeds that of transmitter-receiver 

antennas, all singular vectors in the SVD of the MSR define the signal space, i.e. the noise space has 

no dimensionality to be used for pseudo spectrum generation in the MUSIC. An extended target is a 

relatively big distributed scatterer, which can be viewed as a collection of many point scatterers [6]-
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[7] and, hence, the requirement for the MUSIC may not be satisfied. The number of transmitter-

receiver antennas cannot be increased, arbitrary, to satisfy the MUSIC requirement. This is because 

there are restrictions on the number of transmitter-receiver antennas in terms of the working 

frequency, the antenna size and the required radiation power.  

This paper introduces a data focusing method (DFM) to solve the above problem. The DFM, 

initially, divides the imaging region into several small sections and then, using a linear transformation 

matched to each section, another matrix is obtained from the original MSR matrix. The resultant 

matrix contains, mostly, the responses of scatterers inside the aimed section, i.e. the yielded matrix is 

focused on the reflections from that section. Such a method works similar to a spatial matched filter, 

which weakens the clutter from the scatterers in other sections so as to highlight the signal power of 

the scatterers within an intended section. Focusing on a section causes the number of interested 

scatterers is reduced in comparison to the number of transmitter-receiver antennas and the 

requirement for the MUSIC is satisfied. The image creation for each section can be performed by any 

subspace-based linear inversion. However, we employ the MUSIC algorithm, since it provides the 

super-resolution in locating the targets.  

Reference [7], also, investigates the application of the MUSIC algorithm for imaging the extended 

targets. Assuming the number of transmitters and receivers is enough, it is shown that the MUSIC can 

image an extended target from the original MSR if the dimension of the signal space can be estimated 

correctly. The imaging procedure in [7] cannot provide good resolution for practical use, where the 

number of transmitter-receiver antennas cannot be increased arbitrary. This reference, also, proposes 

an algorithm to estimate the signal dimension. Computer simulations in [7] indicate that although the 

estimation algorithm works quite satisfactory, it cannot predict the signal dimension for the optimum 

image resolution.  

Using realistic experimental data, we compare the results of applying the MUSIC to the original 

MSR and the focused MSR. Our comments on the performance of both applications are given in 

Section V.  

II.  MATHEMATICAL FRAMEWORK OF MSR MATRIX 

    The geometry of the imaging problem is given in Fig. 1, where the background medium is assumed 

to be homogeneous and non-magnetic, and the imaging is performed under the 2D TM incident. The 

imaging region D, containing a number of small scatterers with the unknown locations Xm, m =1, …, 

M, is successively irradiated by Nt transmitters and the scattered electric fields are measured by Nr   

receivers. The imaging is to get the location and, if possible the shape and dielectric properties of the 

scatterers based on the data measured by the receivers. 

From the scalar Helmholtz equation for a 2D problem in the frequency domain, and by adopting the 

framework of the Foldy-Lax model [8]-[9], one can express the MSR matrix K as follows [10] 
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Fig. 1. General setup for a 2D microwave imaging system 
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where T stands for transposition and g0,r(Xm) and g0,t(Xm), respectively, are the receive and transmit 

background Green’s function vectors at the target location Xm that can be written as 
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in which G0 (r, r') is the Green’s function corresponding to the background medium, Ri

r and Rl
t are the 

position vectors of ith receiver and lth transmitter respectively, Am,m' is multiple scattering amplitudes 

[10]. It can be seen from (1) that the Nr ×Nt matrix K can be obtained in terms of only background 

Green’s function vectors and each column of K corresponds to the scattered field measured at the 

receiver array due to one active transmitter. 

III. MUSIC ALGORITHM 

The MSR matrix K maps the transmitter space to the receiver space, i.e. C
Nt

C
Nr

. The MUSIC 

method is based on SVD of matrix K. The SVD of K can be expressed as 

1

†

p p

p

N

p


K u v                                                                                                                                   (3)

                                        

 

wherep
 0 are the singular values, up and vp are the left and right singular vectors, respectively, 

N = min(Nt, Nr) and † denotes the Hermitian. Note that p  0 is related to the signal subspace and p 

= 0 is related to the null subspace. Using the orthogonality of signal and noise subspaces, sorting the 

singular values downwards and arranging their associated singular vectors in terms of sorted results, 

the pseudo spectrum can be calculated as follows 


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IV. THE DATA FOCUSING METHOD 

As understand from (4), the pseudo spectrum cannot be constructed, if M ≥ min (Nt, Nr). When 

M < min (Nt, Nr), assigning the large singular values and their associated singular vectors to the signal 

space and the rest to the noise space, we can generate a pseudo spectrum that locates the dominant 

scatterers. The number of transmitters and receivers, therefore, must be more than point scatterers so 

that the MUSIC can be implemented. An extended target can be viewed as a collection of many point 

scatterers [6]-[7], whose number, practically, exceeds the number of transmitters and receivers, i.e. 

M ≥ min (Nt, Nr) and the requirement for the MUSIC implementation is not satisfied. In [7], it is 

assumed that the number of transmitters and receivers can be increased, arbitrary, to satisfy the 

MUSIC requirement. However, this is not the case for practical applications as there are restrictions 

imposed by the working frequency, the antenna size and the required radiation power.  

The DFM alleviates the above problem by dividing the imaging region into several sections. Letting 

Cd denote the dth section, two matrices Ad and Bd 
are obtained for this section as: 

1 2 1 2

* †

0, 0, 0, 0, 0, 0,[ ( ), ( ),..., ( )] , [ ( ), ( ),..., ( )]
Q Qd t d t d t d d r d r d r d 

 A g X g X g X B g X g X g X                  

(5) 

where g̅
0,t

= g
0,t

 / ‖g
0,t

‖ and  g̅
0,r

= g
0,r

 / ‖g
0,r

‖ are the normalized transmit and receive background 

Green’s function vectors at the location Xdq
∈Cd (q = 1,…,Q or q = 1,…,Q’) , Q and Q' are the number 

of candidate points inside section Cd for constructing Ad and Bd respectively and ‖.‖ denotes the 

vector norm. The new MSR matrices are given by 

d dK KA , d dK B K
                                                                                                                      

(6) 

The substitution of (1) in (6) provides 
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the term g
0,t
T (Xm´)A

d
 is the projection of vector g

0,t
T (Xm´) on 

subspace St
d = span {g̅

0,t
* (Xdq

), q = 1, 2, …, Q}. Also, the term  Bd g
0,r

(Xm) projects vector g
0,r

(Xm) 
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on subspace
 
 Sr

d = span{g̅
0,r

†
(Xdq

), q = 1, 2, …, Q´}. If a scatterer at location Xm is within the section 

Cd or near this section, vectors g
0,t

(Xm)  and g
0,r

(X𝑚) have noticeable projection on subspaces St
d and 

Sr
d respectively. Otherwise, these projections are negligible; specially, if Xm is well-separated from the 

points of section Cd, we have g
0,t

(Xm)┴ St
d, g

0,r
(Xm)┴Sr

d
 and g

0,t
T (Xm) Ad = 0, Bd g

0,r
(Xm) = 0. For 

the ease of understanding, let Mws scatterers at locations {Xm| m = 1, …, Mws , Mws < M} be inside Cd 

and the others be well-separated from Cd points. In absence of noise, (7) gives 
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(8) 

that means matrices K̂d and Ǩd contain, merely, the responses of Mws scatterers, inside Cd. Because 

rank ( K̂d) = rank (Ǩd) = Mws , there are Mws nonzero singular values and the use of the MUSIC with 

K̂d and/or Ǩd detects Mws scatterers at locations {Xm| m = 1, …, Mws}.  

Considering the above explanation, matrices K̂d  and Ǩd in (6) are focused on the scatterer 

responses inside section Cd (the rationale to name as the data focusing method) and the responses of 

other scatterers are weakened. We expect, therefore, the larger singular values correspond to the 

responses of scatterers within section Cd in the SVD of matrices K̂d or Ǩd. The DFM, hence, weakens 

unwanted clutters from other sections and highlights the signature of targets inside the aimed section. 

In order to generate pseudo spectrum for each section, the following relation is used 
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                                                                          (9)                                                                                          

where  ûp and v̌p  are the left and right singular vectors of  K̂d and Ǩd , respectively, and Md is the 

dimension of signal subspace for matrices K̂d or Ǩd. The normalized transmit and receive background 

Green vectors, i.e. g̅
0,t

 and g̅
0,r , are employed so as to treat all sections similarly in terms of amplitude 

Pr,t
d (X). 

Some issues on the implementation of the DFM should be cleared. Firstly, the quantities Q and Q' 

are, respectively, set to the number of transmitters Nt and the number of receivers Nr in order that 

matrices K̂d and Ǩd have the same number of rows and columns as K. The second issue is concerned 

with the shape and size of section Cd. The shape is rectangle to cover all imaging region. Regarding 

the size, the point spread function can be defined as [6] 
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when two points Xd and X are well-separated, Γt(Xd, X) = 0 and  Γr(Xd, X) = 0 implying the two 

points can be well resolved. Considering Ld denotes the border around section Cd, the resolution at 

point Xd (the center of Cd) is defined as the minimum distance 
d
 = ‖Xd - X‖

min 
so that 

( ( , )) ( , ), 0 0.5
d

d d d
L

Max  

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X

X X X X                                                                                    

(11) 

in which Γ(Xd, X)  is equal to maximum of Γt(Xd, X)  and Γr(Xd, X). For  = 0.5, we achieve the 

smallest section Cm, in which two scatters from the neighboring sections can be resolved. Therefore, 

the size of sections Cd should be set to the size of Cm. The generation of the pseudo spectrum with Cd 

= Cm may cause some discontinuities at the borders of the sections. In order to make the pseudo 

spectrum continuous, the imaging region is divided into several sections with size Cd
' , whose size is 

smaller than that of Cm. These sections have not overlap and cover all imaging region. The imaging 

region is, also, divided to several overlapping sections Cd with size of Cm so that the center of these 

sections and sections Cd
'  coincide. For each section Cd, the K̂d and Ǩd are calculated by (6); then (9) is 

employed to generate pseudo spectrum only for the corresponding Cd
' .  

The final issue is concerned with the determination of Md in (9). Considering Cd  is set to Cm , there 

may be just one target in a subsection Cd
'  and hence, Md should be set to 1. This is the case if the 

focusing is perfect and matrices K̂d and Ǩd contains, only, the response of the target inside subsection 

Cd
' . Investigation of Γ(Xd, X) behavior in terms of ‖X-Xd‖ indicates matrices K̂d and Ǩd not only 

contain the response of the target inside subsection Cd
' , but also include the scattering effects of the 

adjacent subsections or sections. In order to detect any target in Cd
'   under such situation, we set Md = 

2 in generating pseudo spectrum (9). It should be noted that even if the largest singular value is due to 

the target inside Cd
' , the pseudo spectrum will have a peak at the target location with Md  = 2. 

The DFM may have some failures when: 

1- The signal-to-noise ratio (SNR) is low. Strong noise makes the DFM generate the noise image that 

hinders the image of the target. 

 2- The signal-to-clutter (SCR) is low for some subsections. The SCR is defined as the ratio of 

singular value for the point scatterer in Cd
'   to the largest singular value of matrices K̂d or Ǩd.  If the 

SCR is considerably low, the scattering effects of the adjacent subsections or sections dominate the 

response of the point scatterer in Cd
'  and the pseudo spectrum (9) provides false amplitude for this 

subsection. It should be noted that for extended targets, the resolvable point scatterers always exist in 

subsections Cd
' , but with different scattering strength. A proper imaging is that the pseudo spectrum 
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(9) gives an amplitude in proportion to the scattering effect of a subsection Cd
'  . Setting Md = 2 in (9) 

is a compromise for proper imaging. 

V. EXPERIMENTAL ASSESSMENT 

The proposed method is examined using two experimental datasets provided by the Institute 

Fresnel, Marseille, France [11]-[12]. The pseudo spectrum amplitudes obtained from (4) and (9) are 

normalized to proper values so as to compare the resultant MUSIC and DFM images. The use of the 

estimation algorithm in [7] to evaluate M in (4) for the MUSIC cannot give the optimum M in terms 

of resolution. Therefore, we generate the pseudo spectrum (4) with different M and only present the 

images with the best resolution in the paper. We set Md = 2 for the DFM in all imaging examples. 

In order to quantify the level of background clutter and the spatial resolution for the images, 

reference  

 

Fig. 2. Metallic target with ‘U-shaped’ cross section 

 

Fig. 3. Images reconstruction applied to experimental data of the geometry in Figure 2 (a) the DFM (b) the 

MUSIC with M = 7 

 

[13] suggests a signal-to-mean (S/Mn) metric, which is the ratio of the target-response peak to the 

average of pseudo-spectrum amplitude. Because an extended target consists of many point targets, 

S/Mn for an extended target is determined as the ratio of the average of target-response peaks to the 
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average of pseudo-spectrum amplitude. The quantity S/Mn is related to the spatial resolution so that 

the resolution of an image becomes higher with the increase of S/Mn. 

The first Fresnel measurement system in [11] employs 36 transmitters located on a circle with 

radius 760 mm, and 49 receivers positioned on a circular arc with radius 720 mm and angularly 

ranged from 60˚ to 300˚ relative to the transmitting antenna. 

The first extended target that is a metallic target with ‘U-shaped’ cross section is shown in Fig. 2. 

The dimensions of the ‘U-shaped’ cylinder are about (80 × 50) mm
2
. The frequency of reconstruction 

is chosen to be 10 GHz. In Fresnel data collection scenario, the activated receivers are altered for any 

active transmitter. Therefore, some elements in MSR matrix that correspond to inactive receivers are 

set to zero. The size of C
m
 in DFM is equal to 22mm and that of Cd

'  is set to 2mm. Fig. 3 illustrates 

image reconstruction from this experimental dataset for the MUSIC with M = 7 and the DFM with Md 

= 2. It can be seen the DFM detects the borders of extended target with higher resolution. The metrics 

S/Mn of Fig. 3 are depicted in Table I, which shows the DFM images has better resolution than the  

Table I. S/Mn metrics of Fig. 3 at 10 GHz 

Algorithm S/Mn (dB)  

DFM  9.39 

MUSIC with M=7 5.53 

 

 

 

Fig. 4. Configuration of targets for the second Fresnel measurement. white = air, grey = foam and  

hatched = plastic 

 

MUSIC image.  

The second Fresnel measurement system in [12] employs 8 transmitters located on a circle with 

radius 1670 mm, and 240 receivers positioned on a circular arc with radius 1670 mm and angularly 

ranged from 60˚ to 300˚ relative to the transmitting antenna. The dielectric targets are shown in Fig. 4. 

The specifications of cylinders are as follow: 

• Foam cylinder: material = SAITEC SBF 300, diameter = 80 mm, r = 1.45 ± 0.15. 

• Plastic cylinder: material = berylon, diameter = 31 mm, r = 3 ± 0.3. 
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The frequency of reconstruction is chosen to be 7 GHz. The size of C
m
 in the DFM is equal to 24mm 

and that of Cd
'  is set to 2mm. We illustrate the results of the DFM and MUSIC reconstruction in Fig. 

5. It can be seen the borders of plastic and foam cylinders are detected in the DFM, whereas the 

MUSIC is not able to detect the location of targets because the number of transmitter antennas is low 

in this measurement.  

VI. CONCLUSION 

We introduce a data focusing method that can be used for microwave imaging. The DFM reduces 

the response power of the scatterers outside the section of interest; but, it keeps the scatterer responses 

from inside of the section. As a result, the strengths of singular values for the targets inside the 

intended section is enhanced several units against the others. Such an enhancement makes the 

requirement for the MUSIC algorithm in terms of the number of transmitter-receiver antennas be 

satisfied for extended targets.  

 

Fig. 5. Images reconstruction for the experimental data of the geometry in Figure 4 (a) the DFM (b) the MUSIC with M=4  

We apply the DFM and the conventional MUSIC to the real experimental data to demonstrate the  

merits of our method. The results indicate the DFM provides better image than the MUSIC for 

extended targets even if the optimized MUSIC is employed. 
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