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Abstract—The aim of this paper is to fully analyze the effects of free
space optical (FSO) communication links on the estimation performance
of the adaptive incremental networks. The FSO links in this paper are
described with two turbulence models namely the Log-normal and
Gamma-Gamma distributions. In order to investigate the impact of
these models we produced the link coefficients using these distributions
and assumed that the network is exchanging data between the nodes
that are contaminated with these coefficients. Firstly, by the FSO link
assumption, we performed the theoretical analysis for the steady-state
performance of the adaptive network and driven closed-form relations
explaining the link impacts. Secondly, we performed simulation results
for Log-normal and Gamma-Gamma link conditions and presented
various results for different levels of turbulence. Finally, we compared
the theoretical and analytical results showing a close agreement between
these two findings. The results are presented by the means of mean
squar e deviation (M SD) and excess mean square error (EM SE) values.

Index Terms— FSO links, adaptive networks, incremental LMS (ILMS),
distributed strategies, Log-normal and Gamma-Gamma distributions.

I. INTRODUCTION

The incremental adaptive networks are the first distributed strategies that have been introduced to
overcome the deficiencies of the centralized networks [1, 2]. These networks need the lowest amount
of communication between nodes and therefore the lowest amount of communication in order to
estimate a desired value. The performance of incremental networks first has been analyzed with ideal
radio frequency (RF) links in [2] and [3]. Then, in [4], these networks have been considered with
noisy links. It has been shown that the noisy link, which is a practical assumption in rea-world
applications, can degrade the performance of networks. Next in [1] these networks have been
considered in fading channel conditions. The famous Rayleigh fading channel has been introduced to
the incremental networks and the link coefficients between nodes have been assumed to follow the
Rayleigh distribution. In recent years, however, the advancement of free space optical (FSO)
communication appliances, that use visible light rays instead of radio waves, made this technology

applicable to almost all communication systems. Wireless sensor networks and their specific relative

Manuscript received 11-June-2018 and revised 14-August-2018, P- 1SSN: 2322-4088
Accepted on 8- Sept.-2018 E- ISSN: 2322-3936



2 Incremental adaptive networks implemented by FSO communication

Turbulent FSO channel

Transmitter Receiver
- 1 \
Laser/LED _}
Detector
lens

Fig. 1. Free space optical communication through turbulent channel.

adaptive networks are one important branch of these systems that can be implemented using visible
light communication.

In analyzing the physical layer for the wireless sensor networks, investigating the accurate
performance of these networks in different channel types and conditions is the most important branch
of research and numerous researchers have worked in this area to clarify the exact performance of
adaptive networks. As we mentioned, the RF links between nodes in adaptive networks have the
problem of noise and fading, but the channels in FSO communication systems suffer from a different
kind of disturbance namely the channel turbulence. The exact cause of channel turbulence is the
change in refractive index of light in free space which is due to the variations in the environment such
asfog, rain, dust etc. (see Fig. 1).

Now, we consider the advantages and the disadvantages of both RF and FSO systems. The FSO
system has unregulated bandwidth while the bandwidth for RF communication needs licensing
because a majority of spectrum parts for this system are occupied. Also, the equipment for RF
systems is more bulky and expensive in comparison with the FSO system equipment. Both systems
are affected by weather conditions. However, FSO communication is far more secure than RF
communication. For these reasons, we considered the implementation of adaptive networks using
FSO communication. In Fig. 2, we depicted an adaptive incremental network implemented with FSO
or RF communication links.

The implementation of wireless sensor networks with FSO and visible light communication
technology is a confirmed branch of science [12]. In most of the FSO implemented systems, the
security and the unregistered bandwidth merits are mentioned [17, 20 and 21]. Also, the fact that the
radio waves are cancerous is a problem that makes the use of visible light waves more interesting.
However, the line of sight and turbulent environments are the problems that we try to overcome.
Usually, the line of sight is not a problem for wireless sensor networks implemented in open areas.

However, working through FSO links must be analyzed in detail for adaptive networks and thisis
the contribution of this paper. We emphasize that none of the references in this paper mentioned the
implementation of adaptive incremental networks with the FSO technology. The FSO channel
modeling is considered in many references for communication systems other than sensor networks
including [6]. The FSO channel noiseis usualy considered to be Additive White Gaussian Noise
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Fig. 2. An adaptive incremental network that can be implemented through RF or FSO links.

(AWGN) [12]. Also, the channel coefficients are considered to follow the Gamma-Gamma
distribution [8] or the Log-normal distribution [9-11]. The Gamma-Gamma distribution is the best for
modeling high turbulence levels. In this paper, we selected the Log-normal distribution which is the
best for modeling Weak and Moderate turbulence levels and Gamma-Gamma distribution for
modeling strong turbulence. Other references [11-17] also considered the FSO channel in detail. In
reference [6] only 3 distributions namely the Negative exponentia distribution, the Gamma-Gamma
and Log-normal distributions were described for MATLAB software and the K-distribution can be
derived from the Gamma-Gamma distribution by considering g = 1. Also, the negative exponentia
distribution can be derived from the Gamma-Gamma distribution by considering @ - oo and g =1
these information can be found in reference [12]. Using the information in these references, we
modeled the FSO links and implemented the adaptive incremental network using these links.

The paper is organized as follows: In Section I, we present the system model and problem
formulation. Also, the detail descriptions of the FSO channel models are given in Section Il. The
steady-state analysis of the ILMS algorithm with FSO links is given in section 11. In Section IV, we
present the simulation and theoretical results and compared them to support the proposed idea.
Finaly, in Section V we have our concluding remarks.

Notation: We used small boldface letters to represent vectors and capital boldface |etters for matrices.
The symbol [.]* denotes complex conjugate for scalars and Hermitian transposition for matrices.
Also, the operator E[. ] represents statistical expectation and the notation ||. || is used for representing

the Euclidian norm of avector.

I1. Problem statement and link descriptions

Now, we consider an incremental network with N nodes. The node k at iteration i has access to the
measurement d ; and the regression input vector u, ;. The linear relation between these valuesis:

dii = U, W + vy (1)
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where the M x 1 unknown weight vector w° = [w°(1),w°(2), ..., w°(M)]"is the main goal in the
estimation process of the network. Thisgoal can be achieved by the following minimization:

arg min,, (Zg=1 E [|dk,i - uk,iW|2D 2
In this case, the answer is:

wl = (legﬂ Ru,k)_l(zgﬂ Cdu,k) ©)

where Ry, = E[uj, juy ;| and cgy i = E[dy uy ;] are the regression input covariance matrix and the
input- measurement cross-covariance vector respectively. Also, we consider the regression inputs and
observation noise variables follow the Gaussian distribution and therefore their covariance matrices
become R, = o2l and R, = o2l where the I represents the M x M unit matrix. As the exact
values of R, and cg,, , are not available in most cases, the aim of the network is to converge to the
w° gradually using the distributed adaptive methods. In incremental strategy, each node k shares its
local estimation of weight vector with itsimmediate neighbor k + 1 and plays asthe initial estimation
for the next node. Theincremental LMS (ILMS) algorithm is given as[8]:

For each timei > 0 repest:

{ Yo < Wyi-1
Vi = Wieor,i + i (dici — Wi, iWi-1,0)
where p,, is the step-size. In this strategy, ¥, ; is the local estimation of unknown weight vector at

(4)

iteration i on the node k. For each iteration and each node, the computational complexity of the ILMS
algorithm is 2M + 1 multiplications and 2M additions for real-valued data and 8M + 2
multiplications and 8M additions for complex-valued data where M is the size of the optimum weight
vector w® which is 4 in this paper. For other algorithms and other network topologies, these values
might be different [24].

A. Considering the FSO channel

Implementing wireless sensor networks using wireless optical communication technology has
various benefits including the secure communication and using unregistered bandwidth. However,
when we assume that the incremental network work through FSO channels as in Figure 3, the shared
local estimation of the previous node is not exactly the same and is contaminated with channel noise
and irradiance:
Therefore, the received local estimation by node k would be:

Tii = D iWie-1,i + Qi ®)

in this relation I, ; are the channel irradiance coefficients with mean m;, = E[Ik‘l-] and second order
moment s, = E[I,f‘i] and g, ; denotes the M x 1 channel noise vector with the covariance matrix

Q, = cZ1. With this assumption, the updating relation of ILMS algorithm changes to:

Vi = T + e i (dici — Wi iTi) (6)
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Fig. 3. Theincremental adaptive network with FSO channels infected with channel noise and irradiance.
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Fig. 4. The PDFsof Log-normal distribution for different values of the log irradiance variance.

and by replacing (6) in (4) we have:

Vi = leiWi-1,i + Qi + 1 (dk,i = Wi (T W1, + qk,i)) )
Surely, the influence of these noise and channel coefficients will degrade channel performance
which we will examine in this paper precisely. In Fig. 3, the channel irradiance coefficients I, ; are

assumed to follow Log-normal and Gamma-Gamma distributions that we will explain more in detail:

B. The Log-normral channel model

One of the most common distributions in modeling the channel turbulence coefficients is the
famous Log-normal distribution [5, 6]. This distribution has been suggested by performing various
experiments and these experiments suggested important characteristics about modeling FSO channels
with this distribution. The probability density function (PDF) of this distribution is given as[6]:

in(! - ?
p(I) = —,_Z;lz%exp {_( (él;; ) } >0

®)
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Table. |. The statistical values of the Log-normal channel.

For Log-normal model
of u E[Il = my E[I?] = s,
0.1 -0.005 1 1.01
0.2 -0.02 1 1.04
05 -0.125 1 1.284
0.8 -0.32 1 1.896

11
where ¢/ = 1.23C,%k7/6Lp /s is the log irradiance variance for a plane wave and the experiments
showed that it usually takes the values of 0.1, 0.2, 0.5 and 0.8. For these values, the PDF of this

2
distribution is shown in Fig. 4, [6]. Also, we have u = —%’.

In[1] it was expressed that the most important characteristics of the channel model that affects the
network performance are the mean and second order moment. Therefore, for the presented o values
we calculate these statistical characteristics and showed the resultsin Table. I.

The increase in the o/ value, makes the channel coefficients to fluctuate more and this causes the
increase in turbulence level.

C. The Gamma-Gamma channel model

In this section, we introduce the Gamma-Gamma distribution that can model all the FSO channel
turbulence levels from weak to strong. in the Gamma-Gamma distribution, the channel coefficients

are generated from the multiplication of two Gamma variables[6]:

I =11, 9
where I, and I,, follow the ordinary Gamma distribution and therefore we have:
(a+B)/2 (@+B)_
p() = LB (55) 1k (2Jal), 1> 0 (10)

I'(a)rp)
where K,,(.) is the modified Bessel function of 2nd kind of order n, and I'(.) represents the Gamma
function. The parameters « and £ in this PDF is given by [8]:

1
0.490}
exp|—2%9___)_q (11)
P ((1+1.11a;2/5)7/6> ]

1-1
0.5107
=lexp| —————=% |1 12
B I p<(1+0696112/5)5/6> _ (12)

2
l’

a =

where o7 = 1.23C2k7/6L1%/® is the log irradiance variance parameter, L is the link range, k = =

and €2 = 5.1073 m~2/3, The values of  and 8 determine the level of channel turbulence. In Table.
Il, the specific values of a« and g for weak, moderate and strong turbulences and their respective

statistical values are given.
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Fig. 5. The Gamma-Gamma PDFs for different turbulence levels of the FSO channel.

Table. Il. The statistical values of the Gamma-Gamma channel.

Turbulence Parameters Statistical values
intensity
a B E[l] = m, E[I?] = 53
Weak 116 101 1 113
Moderate 4.0 19 1 1.76
Strong 4.2 14 1 2.09

Using these values the PDFs of the Gamma-Gamma distributions for different turbulence levels are
giveninFig. 5.

I11. Mean sgquare performance of ILMS algorithm
In this section, we analyze the mean stability and steady-state mean-square performance of the
ILMS agorithm with the FSO link assumptions. Our analysis is based on the energy conservation
relations of [6]. For this we define the following errors:
ki = Aii — U iWPp-1,i
Yri 2 w0 — Py (13)
Now, if we subtract w° from both sides of equation (7) and replace 17;,(‘1- where necessary then we

have:
Vi = W1 + (1= L)W = el ity Wi iWie—1,i — il Vi
e (1 = Py Ut ;g ;WO — Qe + pacy ;W i G (14)
In [1] it was mentioned that the convergence condition for choosing the step-size parameter of the
incremental LMS algorithm in FSO linksis:

mp—1
’ mklmin(Ru,k)

mg+1
max {0 } <y < e (B (15)
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This condition shows that the value of step-size directly depends on the coefficient means (my,) of
FSO channel and therefore depends on the channel model that we assumed. To prove this

convergence condition we must use some definitions [1]. Using (13) we have:
E[$yi] = mdi E[Pp1:] + (1 = m))w? (16)
where:
Je =1 — Ry 17)
By considering iteration in (16) we get:
E[Yri] = (TN=1 man)E[Wri-1] + Zh=1 ((1 —m))n [lnss mllz) we  (18)

For analyzing the convergence condition we define the M matrix:

M 2 [y my)y (19)
In order to converge, al Eigen values of this matrix must be inside the unit circle:
p(M) <1 (20

In other words we must have [1]:
pM) < [IM| < llmyJillllme)ll . ImyJull = p(miJ1)p(ms,],) ... p(myJn)
In order to satisfy the constraint of (20) it is sufficient to have p(m,]J,) < 1thisentails:
Iy (1 — ) < 1 (21)
Therefore, the limits for step-size are pointed out using:

mg—1
mkﬂmin(Ru,k)

mg+1

max {0' mklmax(Ru,k)

} < 125% <
and therefore the convergence condition is proven to be the same asin [1]. Also, by considering this
condition we have:
lim; o, E[‘T’k,i] =~ M)_l 22:1 ((1 —my)Jn H{V=n+1 my Il) w'
(22)
Now, in order to analyze the mean square performance of the ILMS agorithm we define the

following performance criteria[8]:

MSD, £ lim;,. E [”J’k—u”f]

(23)
. ~ 2
EMSE,, 2 lim; ., E [”"”‘—“”Ru,k]
(24
MSEy 2 limy_o, E [|eyi| | = EMSE, + 02, (25)
We define:
Cri = M) Croqi + (1 —my)]i (26)

Inthisrelation Cy; = Cy ;_; aso Cy, = 1. We can write:

E[lﬂljk,i] = Ck‘iWO (27)
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If we apply the weighted norm operation in both sides of equation (14) and take expectation of them
we get:

~ 2 ~ 2 2 2
E([Biilly,] = E[®e-villy, | + wiolek [lwilly, |+ E [lawillg, | + 1wl 1n, ) 28

In this recursive relation we have:

Gi = Ty — W E[Erui i + Wity B | + HZE [”uk,i”zkuz*c,iuk,i] (29)
where we consider the following relations:
L, = skGy (30)
T, =0 -2my + s,)Gy, (3D
Hy; = (my = 51)(Cpo1,iGye + GiCre—y,i) (32)
Ry = UpA, Uy (33

aso, we define [1]:
Vi = Uiy, T = URE Uy,
T, = UpZ Uy, Uy = uy Uy,
Ty = U Ty Uy, Hy; = U Hy Uy,
wl = Upw°, Ck—1,i = Uy Cr_1,Ux,
Qi = Ui Qu Uy, W=ww =wow

By considering these definitions, the equation (25) can be written as:

_ 2 — 2 _ 2 _ 2 _
E [[biilly, | = B [1#n-villy, | + utodik Il | + E|I@eillg, | + 1917, .5, ) 39

where:
r v Y —=* = —% — Sl — 2 —% — v N
Gy = Ty — WE[Z Uy + W Wy Zi | + UZE [”uk,i”fkuk,iuk,i] =Xy — e By +
AZy) + i (Aptr[ZeAg] + A ZAy) (35)
and we have:
E;( = Skﬁk (36)
Tk = (1 - ka + Sk)Ek
Hy; = (my — 5i)(Cro1,iGi + G Cr_y ;) (37)
We can write:

E I:”J’kl”;k] =E [||17’k—1,i||;rj + llichﬂzz,ktT[Akfk] + tr[Qy Gyl + tr[WT,] + tr[WHk,i] (38)
By the following definitions:
oy 2 diag[Zi], o, 2 diag[X;], A 2 diag[Ag] (39)
and
Fi 21— 2Ay + pgAy, + 445 (40)

we have:

E [||17)kl||;k] =E [”q)k—l,i”;;(] + 9k,iOk (41)
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where:

Gii = Heok AL + (diag[QDTFy + (1 — 2my, + s)(diag[W])TFy

+2(my — 5,)(diag[W])" Cp_y; Fi. (42)
and also we have:
6} = s F .0y (43)
Now, if we choose a sufficiently small step size so that:
skp(F) < 1 (44)
we get to the following relation for i > 0:
E [||17)kl||;k] =E [”17)1(,1'—1”;“1’16,(] + A41,i0k (45)

where we used the following definitions:

Frr1a 2 Srarm1Frr1-1) Ser1F 1) o (SyFn)(51F1) . (Sg—1Fg—1) (46)

i = GriFr2 + Giv1,iFiz + o Gr-2iF iy + Gr-1,i (47)
Also, asfor small step sizes as the iteration number goesto infinity (i - o) we have:
— 2 — 2 —
E([#iely, | = E 1910l | + grcoBi (48)
Then, the steady-state metrics in FSO environment become:
MSDy = ayo(I — Fr)  diag[l] (49)
EMSE; 2 ayon(I — Fr1) Ay (50)
MSE;, £ EMSE} + 0, (51)

Then, according to (47) we must determine gy, ., using (41). Therefore with the help of (25) we have:

Cr-10 = Uy, (I = 207 x BN (1 = m)l [Ty i) ) Upe (52)
In[1] it has been assumed that m;, = 1 for all nodes and this term was canceled out from the later
calculations. In this paper however, we consider the following assumptions:
1) me=1, Ryi =05, Qi = ol
2) Fp~(1-2uc2)I
Because F, isdiagonal, we have F,,; ~ F1F, ... Fy and we can write:
Frr ~ 5p(1=2u02,)" I (53)
If we define s, £ [T}, s, we can write:
I-Fp =~ (1= 5,(1 - 2u02,)" )1 (54)

Now, we can approximate g o, and ay -
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I = (U000 ) (diag[IDT + (Ucz,k(l - Zﬂai,k)) (diag[1])"
+5,(1 = 2my + ) (1 — 2p02; ) (diag[WDT + 2(my, — s;)(diag[WDTCp—1 oo F
~ (Hzaf,kazik + 02 (1 - Z#szjc)) (diag[ID"
+5,(1 —2my, + si)(1 — 2uaf ) (diagWDT + 2(my, — s;)(diag[WDTC—1,00 Fic
Gioen = 5p(1 = 20021)" (ENo1 Grnoo = Giew1,0) + Gimr0 = (5p (1 = 20021)" ) TNt Gnoo +

N
(Sp(l — 2405 ) )gk—l,oo (55)
Finally, we can derive the following relations for the steady-state behavior of ILMS algorithm under
FSO conditions:

1

MSD, =~ (1—5,)(1—2;4,1)” -

1) fu ot fin (56)
where unlike [1] we incorporated Cj_; o, in definition of f;:
fie = (ﬂzag,kaik +a2,(1- Zﬂo'i,k)) M +s,(1 = 2my, + 5.)(1 = 2u0y ;) Ilwe||?
+5p(mye = 5) (1 = 205 1) Ci—1,00 W11 (57)

1

EMSEy, ~ o2, ( R 1) Nt fo + 02k fima (58)
k

in these equations, we can see the effect of m;, and s;, on the performance of the adaptive network.
With the help of the entriesin Table. 1 and Table 11, we can see that these variables are dependent on
the parameters of the Link. This criterion represents the dependence of network performance on the
assumed FSO channel model. It means that if we change the parameters of the FSO link, we can

directly observe the changes in estimation error performance and that is our contribution to this paper.

IV. Simulation results

As it was mentioned earlier, our intention in this paper is to investigate the performance of
adaptive incremental networks implemented with the FSO technology both theoretically and with
simulations. Now, it is the time to give the simulation results for various FSO channel conditions. We
divide our results for the Log-normal and Gamma-Gamma channel models. For both of these models,
the theoretical results are presented and compared with the simulation results. To perform our
simulations we designed a network like Fig. 2 with 20 nodes. This network consists of nodes that can
each performs local estimations with LMS agorithm and then share their information with the

neighboring nodes via FSO links. The aim of this network in the estimation application is to converge
to the w® vector with the size of M = 4 and therefore we have w° = le [11 1 1]. The convergence
and the performance of the network depends on the Eigen values of the input covariance matrix R, .

For all the nodes the step-size value p is 0.02 because for al the simulations we considered 1,,,,,, = 5

and using the relation (15) we must choose the step-sizevalueas 0 < u < 0.4 for the convergence.



2 Incremental adaptive networks implemented by FSO communication

Performance of incremental network in different channel conditions
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Fig. 6. The steady-state mean sguare deviation of incremental network in FSO channels.

The input data and the noise variables (both measurement noise and the channel noise) are
produced with the Gaussian distribution. The measurement noise is the noise that contaminates the
sensor measurement task and is shown in the paper with v, ;, however, the link noise or channel noise
contaminates the local estimations that are communicated between the nodes and is shown in the
paper with g ;. Also, the Eigen spread of the covariance matrix of the input variables (R, ;) is
considered to be between 1 and 5. As we mentioned the FSO channel among nodesis considered to be
modeled with Log-normal distribution or with Gaussian noise.

For the theoretical results to match with the simulation ones the iteration number must be large
enough. We are working with the adaptive algorithms, therefore after they are converged, the number
of iterations is not important and the results will be the same for all the remaining iterations. The
needed number of iterations for our network to converge is less than 100 (it depends on the number of
the nodes, step-size value and the used algorithm) and after that, the mean square error results remain
unchanged.

For our first smulation test, the MSD and EMSE of the incremental network are evaluated in
different FSO channel conditions. In Fig. 5, it is presented that the MSD of the network in higher
(moderate) turbulence conditions becomes unacceptable but for lower o7 values the network can
converge to the desired vector suitably. Also, for the times that the channel turbulence does not exist
and only the channel noise is present, the convergence error becomes very low according to the
variance of channel noise (62).

In the estimation task, it is important for us to know exactly how much we get close to the desired
weight vector. Therefore these diagrams show the error amount (the difference between the estimated
and desired weight vector) in different link conditions. In various papers, these diagrams have been
given for numerous channel types and here, for the first time, we presented them for FSO links.
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Ps%rformance of incremental network in different channel conditions
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Fig. 7. The steady-state excess mean square error of incremental network in FSO channels.

Incremental network performance in Log-normal channel with afzo.l
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Fig. 8. The theoretical and simulated MSD and EMSE results of incremental network in Log-normal channel with o7 = 0.1.

The same remarks can be made for the EM SE of the incremental network in FSO channelsin Fig.
7. For the second simulation, we assumed the incremental network with FSO Log-normal channel and
o = 0.1. Both the resulted MSD and EMSE of simulations are compared with the theoretical error
values that are acquired using relations (56) and (58). The results are shown in Fig. 8 and 9. It can be
seen that there is a reasonable match between the theoretical and simulation outcomes.

For the third simulation again the FSO channel is considered to be Log-normal but this time with
o = 0.2. Both the theoretical and simulation results were acquired for this test and the results are
presented in Fig. 9. As we expected the results of this simulations are degraded in comparison with
the previous simulation due to the increase of o/ value which is accordingly related to the worsening
of the environmental conditions.
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Incremental network performance in Log-normal channel with ai:0.2
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Fig. 9. The theoretical and simulated MSD and EMSE results of incremental network in Log-normal channel with o7 = 0.2.

Persfgrmance of incremental network in different FSO channel conditions
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Fig. 10. Gamma_Gamma simulation results MSD

The FSO link model parameters for the Gamma-Gamma distribution are given in the simulation

plots. Also, we performed simulations for the cases that the channel is not turbulent and only is

contaminated with optical noise and the results are depicted according to the channel noise variance

02. We can see the outcome in MSD sense in Fig. 10. This performance analysis shows how close we

can converge to the w® vector by the incremental adaptive network when working through Gamma-

Gamma FSO channels.

The other error criteria that we can examine the network performance with, is the EMSE. The

performance of the incremental network in FSO channels in EMSE sense is given in Fig. 11. It is

important to notice that for the times when the FSO channel is contaminated with Turbulence, the

difference between the MSD and EM SE values become clearer and we can see that the EMSE values

are abit higher than the MSD values. For the noisy links, this difference is not noticeable.
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Fig. 12. Weak Gamma_Gamma Theoretical results

To compare the smulation results with the theoretical findings of relations (56) and (58) we
performed 2 separate simulations and presented the results in both MSD and EM SE senses. The first
simulation was conveyed for the Gamma-Gamma modeled FSO channel with weak turbulence regime
and the results are depicted in Fig. 12.

Aswe can see there is a reasonable match between the theoretical and simulation resultsin Fig. 12
and this shows the credibility of our theoretical findings. The second comparison between the
simulation and theoretical results was made for the Gamma-Gamma modeled FSO channel with the
moderate turbulence level. The results are shown in Fig. 13.

In Fig. 13 also, there is a nearly perfect match between the simulated and theoretical results
showing the exact anticipated error values for the incremental adaptive network that is implemented
with the FSO communication technology.



2 Incremental adaptive networks implemented by FSO communication
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Fig. 13. Moderate Gamma_Gamma Theoretical results

IV. Conclusion

Adaptive networks can be used in different channel conditions for various applications. The
important thing is how well they work in these conditions. In order to investigate this, we must
perform both theoretical and simulation analysis depending on the exact values of link models. In this
paper, we considered FSO channels that were impaired with Gaussian noisy and turbulence modeled
with Log-normal and Gamma-Gamma distributions. Both the theoretical and simulation results
showed the degradations that the adaptive incremental network face when using FSO links. We
conclude that the when the turbulence level islow, the incremental network can perform its estimation
reasonably but for the times that the links contaminated with high-level turbulence (as a result of
variations in the refractive index of the atmosphere) some countermeasures like the channd
estimation must be taken into the consideration for the performance improvement. In future works, we
will analyze the performance of adaptive networks in other FSO channel models. Also, in future
works, we will consider the time-varying channel estimation for FSO links with adaptive networks

which will be a solution for the non-stationary channel condition.
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