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Abstract- In this paper, the problem of target detection in phased-
MIMO radars is considered and target detection performance of 
phased-MIMO radars is compared with MIMO and phased-array 
radars. Phased-MIMO radars combine advantages of the MIMO and 
phased-array radars. In these radars, the transmit array will be 
partitioned into a number of subarrays that are allowed to overlap and 
each subarray transmits a waveform which is orthogonal to the 
waveform transmitted by other subarrays. In this paper, target 
detection performance of phased-MIMO radars is analyzed with two 
detectors theoretically in addition to the investigation of simulation 
results. First, it is assumed that the transmitted waveforms are ideally 
orthogonal and secondly the transmitted waveforms are considered to 
be correlated (not fully coherent or ideally orthogonal). The Generalized 
likelihood ratio test (GLRT) and the likelihood ratio test (LRT) are used 
for target detection. The closed-form expressions of the false alarm and 
detection probabilities in presence of Gaussian noise are obtained. 
Simulation results validate the theoretical analysis. 

  
Index Terms- Multiple-input multiple-output (MIMO) radar, Phased-MIMO radar, 
Neyman-Pearson criterion, likelihood ratio test (LRT), Generalized likelihood ratio 
test (GLRT). 
 

 

I. INTRODUCTION 

In the last decade, multiple-input multiple-output radars have become the focus of attention of 

researchers [1]-[3]. In this radar systems, each transmit antenna is able to create an independent 

waveform. The MIMO radars employ multiple antennas for transmitting several orthogonal 

waveforms and multiple antennas for receiving signals reflected by the target [4], [5]. Based on 

antenna configurations, MIMO radars can be classified into two types: (i) MIMO radars with widely-

separated antennas, and (ii) MIMO radars with co-located antennas [6].  

The first type is known as the statistical MIMO radars or the distributed MIMO radars, where its 

antennas are separated far from each other such that a target can be viewed from different spatial 

directions to achieve spatial diversity gain [7], [8]. The second type is known as the co-located MIMO 
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radars, where the transmitter and receiver antennas are closely spaced to transmit a beam towards a 

certain direction in the space [9], [10]. In the phased-array radars, if the signal coherency is preserved, 

the signal can be processed coherently at the transmit/receive antenna arrays [11].  

Recently, adding the coherent processing gain to the MIMO radars with co-located antennas has 

been called phased-MIMO radars. The essence of this technique is on partitioning the transmitting 

array to a number of overlapped subarrays with smaller sizes such that each subarray operates in the 

phased-array mode. Hence, phased-MIMO radars exploit jointly the benefits of the phased-array and 

MIMO radars [11]-[14].  

The phased-MIMO radar has all the advantages of the MIMO radar, in other words; it is capable of 

detecting a higher number of targets, improving parameter identifiability, improving angular 

resolution, and extending the array aperture. Furthermore, the phased-MIMO radar provides the 

means for designing the overall beam pattern of the virtual array and applies beamforming techniques 

at both the transmitting and the receiving sides. This radar provides a trade-off between angular 

resolution and robustness against beam-shape loss and offers improved robustness against strong 

interference [11].  

In [15], [16], modern optimization algorithms are introduced with the orthogonal waveform design 

in MIMO radars. Hence, an algebraic method is presented to create poly-phase orthogonal sequences 

with small Doppler shift in [17]. In [18], it is assumed that transmitted waveforms are ideally 

orthogonal and fully coherent in target detection and localization for MIMO radars. It is shown that 

the optimal performance of target detection in MIMO radars is achieved when orthogonal signals are 

transmitted [19].  

In this paper, at the first target detection is analysed with GLRT and LRT detectors in phased-

MIMO radars, when all subarrays transmit orthogonal waveforms and secondly, target detection is 

considered with LRT detector when subarrays transmitted waveforms are correlated (not fully 

coherent or orthogonal). Furthermore, a comparison is made among target detection methods in 

phased-array, MIMO and phased-MIMO radars and then, the effect of the detector type is analysed on 

the target detection probability. The optimal detector based on the Neyman-Pearson criterion is 

extended and applied to phase-MIMO radars, when subarrays transmitted waveforms are not fully 

coherent or orthogonal. Numerical results are shown to validate the theoretical analysis and to 

compare performance of this detector in MIMO and phased-MIMO radars. 

This paper is organised as follows: firstly, the signal models for MIMO and phased-MIMO radars 

are presented in Section II. Section III presents the problem of target detection in phased-MIMO 

radars with orthogonal and correlated (not fully coherent or ideally orthogonal) transmitted 

waveforms. In Section IV, simulation results are shown. Finally, Section V concludes the paper. 
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II. SIGNAL MODEL 

In this section, co-located MIMO and phased-MIMO radars are briefly introduced. 

A. Signal model for co-located MIMO radar 

Consider a co-located MIMO radar with a transmit array consisting of 𝑀𝑡 co-located antennas and a 

receive array consisting of 𝑀𝑟 co-located antennas. In co-located MIMO radars, both transmit and 

receive arrays are assumed to be spatially close to each other; therefore, the target direction is almost 

the same for all array antennas. In the transmit array, the mth antenna emits the mth waveform. Vector 

𝚽(𝑡) = [Φ1(𝑡), … ,Φ𝑀𝑡(𝑡)]𝑇contains the waveforms transmitted from different elements of the array 

where t denotes the time index within the radar pulse, and (. )𝑇stands for the matrix transpose 

operator. As it is known, the orthogonal condition is given by 

 

∫ 𝚽(𝑡)𝚽𝐻(𝑡)𝑇0
𝑑𝑡 = 𝐈𝑀𝑡×𝑀𝑡                                                                           (1) 

 

where 𝑇0 is the radar pulse duration, 𝐈𝑀𝑡×𝑀𝑡 is the 𝑀𝑡 × 𝑀𝑡 identity matrix and (. )𝐻denotes Hermitian 

transpose operator. The 𝑀𝑟 × 1 received signal vector can be written as 

 

𝐱(𝑡) = 𝐱𝑠(𝑡) + 𝐱𝑖(𝑡) + 𝐧(𝑡)                                                                          (2) 

   
where 𝐱𝑠(𝑡), 𝐱𝑖(𝑡), and 𝐧(𝑡) refer to the source/target signal, interference/jamming, and sensor noise, 

respectively. The target signal is given by 

 

𝐱𝑠(𝑡) = β𝑠(𝐚𝑇(𝜃𝑠)𝚽(𝑡))𝐛(𝜃𝑠)                                                                                       (3) 

 
where sβ is the target reflection coefficient, 𝜃𝑠 is the target direction, 𝐚(𝜃) is the actual transmit 

steering vector associated with the direction 𝜃, and 𝐛(𝜃) is the actual receive steering vector 

associated with the direction 𝜃. The uniform linear arrays (ULA) are used for the transmission and 

reception then 𝐚(𝜃) and 𝐛(𝜃)can be expressed by 

 

𝐚(𝜃) = [1, exp(−𝑗2𝜋𝑑𝑡 sin𝜃) , … , exp(−𝑗2𝜋(𝑀𝑡 − 1)𝑑𝑡 sin𝜃)]𝑇                                                (4) 

𝐛(𝜃) = [1, exp(−𝑗2𝜋𝑑𝑟 sin𝜃) , … , exp(−𝑗2𝜋(𝑀𝑟 − 1)𝑑𝑟 sin𝜃)]𝑇                                               (5)                                                      

 
where 𝑑𝑡 and 𝑑𝑟 are the interelement spacing measured in wavelength for the transmit and receive 

arrays, respectively. After receiving the signals, they are passed through filters matched to 

{Φ𝑚(𝑡)
 
}𝑚=1
𝑀𝑡  , the mth transmitted waveform is recovered as 
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X𝑚(𝑡) ≜ ∫ 𝐱(𝑡)Φ𝑚
∗ (𝑡)𝑇0

,     𝑚 = 1, … ,𝑀𝑡                                                     (6) 

where (. )∗ denotes the conjugate operator. The virtual data vector is written as 

𝐲 = [𝐱1𝑇 , … , 𝐱𝑀𝑡
𝑇 ]𝑇 = 𝛽𝑠𝐕(𝜃𝑠) + 𝐲𝑖+𝑛                                                                        (7) 

 
where 𝐕(𝜃𝑠) ≜ 𝐚(𝜃𝑠)⨂𝐛(𝜃𝑠) is the steering vector associated with the virtual array, ⨂ stands for the 

Kronker product and i+ny  represents the interference-plus-noise components [11]-[13]. 

B. Signal model for phased-MIMO radar 

In the phased-MIMO radars, the transmit array is partitioned into K overlapping subarrays (1 ≤

𝐾 ≤ 𝑀𝑡) such that no subarray is exactly the same as another subarray. All antennas of the kth 

subarray emit the signal Φ𝑘(𝑡) coherently; therefore, a beam is formed towards the target direction. 

Different waveforms are transmitted by different subarrays at the same time, Fig. 1. 

The output signal of the kth subarray is modeled as 

 

s𝑘(𝑡) = �𝑀𝑡
𝐾
Φ𝑘(𝑡)𝐰𝑘

∗  ,       𝑘 = 1, … ,𝐾                                                                            (8) 

 
where 𝐰𝑘 is the kth subarray beamforming weight vector. It is worth noting that energy of the kth 

subarray
 
is 𝑀𝑡

𝐾
 within one radar pulse and it is equal to  

𝐸𝑘 = ∫ s𝑘𝐻(𝑡)s𝑘(𝑡)𝑑𝑡𝑇0
= 𝑀𝑡

𝐾
                                                                              (9) 

Hence, the total transmitted energy of the phased-MIMO radar equals  𝑀𝑡 . The signal reflected by 

the target is given by 

 

𝐫(𝑡,𝜃) = �𝑀𝑡
𝐾
𝛽(𝜃)�𝐜(𝜃)⨀𝐝(𝜃)�𝑇Φ𝐾(𝑡)                                                                        (10) 

                                                                   
where  

𝐜(𝜃) = [𝐰1
𝐻𝐚1(𝜃), … ,𝐰𝐾

𝐻𝐚𝐾(𝜃)]𝑇                                                                                    (11)          

𝐝(𝜃) = [𝑒−𝑗𝜏1(𝜃), … , 𝑒−𝑗𝜏𝐾(𝜃)]𝑇                                                                                            (12) 



Journal of Communication Engineering, Vol. 7, No. 2, July-December 2018 5 
 

 

Fig. 1. A phased-MIMO radar with 3 subarrays. 
 

where 𝐜(𝜃), 𝐝(𝜃),  and 𝐚(𝜃) are the transmit coherent processing vector, waveform diversity vector, 

and actual transmit steering vector, respectively; 𝛽(𝜃) is the target reflection coefficient, 𝜏𝐾(𝜃) is the 

time delay for the signal to travel between the first antenna of the kth subarray and the first antenna of 

the transmit array, and ⨀ denotes the Hadamard product operator. Hence, the received vector of array 

observations is written as  

𝐱(𝑡) = 𝐫(𝑡,𝜃𝑠)𝐛(𝜃𝑠) + 𝐧(𝑡)                                                                                     (13)  

where 𝐧(𝑡) and 𝐛(𝜃𝑠)are the noise term and the actual receive steering vector associated with 

direction 𝜃𝑠, respectively. Assuming that the target is observed in the presence of D interferers with 

reflection coefficients {β𝑖
 
}𝑖=1𝐷  and directions{θ𝑖

 
}𝑖=1𝐷 , the array received signal is written as  

𝐱(𝑡) = 𝐫(𝑡,𝜃𝑠)𝐛(𝜃𝑠) + ∑ 𝐫(𝑡,𝜃𝑖)𝐛(𝜃𝑖) +𝐷
𝑖=1 𝐧(𝑡)                                                                     (14)  

Then, the virtual data vector after matched-filtering is converted into   

𝐲 = [𝐱1𝑇 , … , 𝐱𝐾𝑇 ]𝑇 = �𝑀𝑡
𝐾
𝛽𝑠𝐮(𝜃𝑠) + ∑ �𝑀𝑡

𝐾
𝐷
𝑖=1 𝛽𝑖𝐮(𝜃𝑖) + 𝐧                                                  (15)  

  

where n is the noise term with covariance matrix R𝑛 = 𝜎𝑛2𝐈𝐾𝑀𝑟 and 𝜎𝑛2 is noise power, and 𝐮(𝜃) ≜

(𝐜(𝜃)⨀𝐝(𝜃))⨂𝐛(𝜃) is the virtual steering vector associated with direction 𝜃 [11]-[13]. Using signals 

modeled at (7) and (15) for MIMO and phased-MIMO radars, respectively, 𝐕(𝜃) and 𝐔(𝜃) are 

defined as 
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𝐕(𝜃) ≜ �𝑀𝑡
𝐾
𝛽𝑠𝐯(𝜃𝑠)                                                                                                              (16) 

𝐔(𝜃) ≜ �𝑀𝑡
𝐾
𝛽𝑠𝐮(𝜃𝑠)                                                                                                 (17) 

 
If the number of subarrays is equal to the number of transmitter antennas, the virtual data vector 

without interference is written as 

𝐲 = �𝐕(θ) + 𝐧       for MIMO Radar                  
𝐔(θ) + 𝐧     for Phasd −MIMO Radar                                                                         (18) 

III. TARGET DETECTION 

A. Orthogonal waveforms 

In this section, two detectors, namely the LRT and GLRT detectors, are presented. The optimal 

detector in the Neyman-Pearson criterion is the likelihood ratio test [22]. 

 

1) The GLRT detector 
 

In [20], the radar detection problem is formulated as follows: 

�
𝐻0: 𝐲 = 𝐧                 

𝐻1: 𝐲 = �𝑀𝑡
𝐾
𝛂 + 𝐧

                                                                                                (19) 

where 𝐲 is a 𝑀𝑡𝑀𝑟 × 1 complex vector whose entries correspond to the output of the each matched 

filter at every receiver, 𝐧 is a 𝑀𝑡𝑀𝑟 × 1 white Gaussian noise vector and 𝛂 is a 𝑀𝑡𝑀𝑟 × 1 complex 

vector defined as 

𝛂 = �
βs𝐚(θs)⨂𝐛(θs)                      for MIMO Radar                            
βs�𝐜(θ)⨀𝐝(θ)�⨂𝐛(θ)        for Phased −MIMO Radar                                                     (20) 

Assume that the distribution of 𝛽𝑠 is known and equal to 𝛽𝑠 ∼ 𝐶𝑁(0,1). Although the distribution 

of 𝛽𝑠 is known, the angles of direction, 𝜃𝑠 and 𝜃, are unknown. As a result, the distribution of 𝛂 

cannot be known exactly, so in this detection problem, generalized likelihood ratio test (GLRT) can 

be employed by replacing the unknown coefficient vector 𝛂 by its ML estimate then the likelihood 

ratio test can be written as 

  𝑃(𝐲|𝐻1,𝜎𝑛2,𝛂)𝛂  
𝑚𝑎𝑥

𝑃(𝐲|𝐻0,𝜎𝑛2)
≶𝐻0
𝐻1                                                                       (21) 
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The probability distribution of y  under 1H  can be written as 

𝑃(𝐲|𝐻1,𝜎𝑛2,𝛂) = 1

𝜋𝑀𝑡𝑀𝑟𝜎𝑛
2𝑀𝑡𝑀𝑟 exp �−

�𝐲−�𝑀𝑡
𝐾 𝛂�

𝐻
�𝐲−�𝑀𝑡

𝐾 𝛂�

𝜎𝑛2
�                                      (22) 

 
After differentiating natural logarithm of (22) with respect to 𝛂 and equating the result to 0, the ML 

estimate of 𝛂 can be found as 

𝛂𝑀𝐿^ = �𝐾
𝑀𝑡
𝐲                                                                                                      (23) 

If 𝛂𝑀𝐿^  is replaced with 𝛂 in (22), the conditional probability becomes 

𝑃(𝐲�𝐻1,𝜎𝑛2,𝛂𝑀𝐿^ ) = 1 (𝜋𝑀𝑡𝑀𝑟𝜎𝑛
2𝑀𝑡𝑀𝑟⁄ )                                                         (24) 

The probability distribution of 𝐲 conditioned on 𝐻0 is given by 

𝑃(𝐲|𝐻0,𝜎𝑛2) = 1

𝜋𝑀𝑡𝑀𝑟𝜎𝑛
2𝑀𝑡𝑀𝑟 exp �− 𝐲𝐻𝐲

𝜎𝑛2
�.                                               (25) 

Hence, the log likelihood ratio can be written as 

                              

ln �𝑃�𝐲�𝐻1,𝜎𝑛2,𝛂𝑀𝐿
^ �

𝑃�𝐲�𝐻0,𝜎𝑛2�
� = −𝐲𝐻𝐲

𝜎𝑛2
                                                                                                       (26) 

 
and the likelihood ratio test becomes 

∥ 𝐲 ∥2≶𝐻0
𝐻1 𝑇′                                                                                                                          (27) 

where 𝑇′ is the accordingly modified version of 𝑇 and  ∥. ∥  represents the Fobenious norm. 

2) The LRT detector 
 

Based on [19], the radar detection problem is formulated as follows 

�H0: Target dose not exists  
H1: Target exists                                                                                                                       (28) 

Using two hypotheses represented in (28) and (18) is replaced by  
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�
𝐲0 = �𝐧                          for MIMO Radar                     

𝐧                          for Phased −MIMO Radar                 

𝐲1 = �𝐕(θ) + 𝐧            for MIMO Radar                     
𝐔(θ) + 𝐧           for Phased− MIMO Radar                 

                                                     (29) 

Now, assume R denotes the data field satisfying the target existing assumption, the detection 

probability and the false alarm probability are respectively given by 

 

�
𝑃𝐷 = ∫ 𝑃𝑦(𝐲|𝐻1)𝑑𝑦𝑅

𝑃𝐹𝐴 = ∫ 𝑃𝑦(𝐲|𝐻0)𝑑𝑦𝑅

                                                                                                                   (30) 

 

where 𝑃𝑦(𝐲|𝐻1) and 𝑃𝑦(𝐲|𝐻0) denote the probability density function of measured data with 

assumption 1 and the probability density function of measured data with assumption 0, respectively. 

Consider additive white Gaussian noise 𝐧 ∼ N(0,𝜎𝑛2), then the virtual data vector is Gaussian and can 

be rewritten as 

 

𝐲 = �N(𝐕(θ),σn2)         for MIMO Radar                     
N(𝐔(θ),σn2)         for Phased −MIMO Radar    

                                                                       (31) 

 

The likelihood function is represented by 

p(𝐲;θ) =
1

(2π)
MrK
2 det

1
2[C]

 

                   × exp [−1
2

(𝐲 − 𝐔(𝜃))𝐻C−1(𝐲 − 𝐔(𝜃))]                                                                     (32) 

where C is covariance matrix 𝐂 = 𝜎𝑛2𝐈𝑀𝑟𝑁, 𝐈𝑀𝑟𝑁 denotes an 𝑀𝑟𝑁 × 𝑀𝑟𝑁  identity matrix, H and N 

stands for the Hermitian operation and the number of samples in a radar pulse, respectively.  

Applying the logarithm operation on both sides,  

log𝑝(𝐲;𝜃) = −
MrK

2
log(2𝜋)−

1
2

log(det[C]) 

                          − 1
2𝜎𝑛2

(𝐲𝐻𝐲 − 2𝐔𝐻(𝜃)𝐲 + 𝐔𝐻(𝜃)𝐔(𝜃))                                                             (33) 

To estimate 𝜃 using the virtual data vector, according to the Neyman-Fisher factorization [21] for 

the phased-MIMO radars, the log-likelihood function is calculated by 
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log𝑝(𝐲;𝜃) = ℎ(𝐲) + g1(𝐲,𝜃) + g2(𝜃)                                                        (34) 

 
The optimal detector in the Neyman-Pearson criterion is the likelihood ratio test [22] and its log-

form is defined as 

𝑇 = log(𝑝𝑦(𝐲|𝐻1)/𝑝𝑦(𝐲|𝐻0)) ≷𝐻0
𝐻1                                                                                          (35) 

Where 𝜉 refers to the threshold and is equivalent to the desired probability of the false alarm. 

According to (34), T is calculated by 

𝑇 = log𝑝𝑦(𝐲|𝐻1)− log𝑝𝑦(𝐲|𝐻0) 

     = ℎ(𝐲|𝐻1) + g1(𝐲,θ|𝐻1)− ℎ(𝐲|𝐻0)− g1(𝐲,θ|𝐻0)                                                (36) 

According to the signal model, we have  𝐲 ≜ �𝐲1 = 𝐔(𝜃) + 𝐧   ;𝐻1
𝐲0 = 𝐧                 ;𝐻0

. From (29) and (35), the log-

likelihood ratio is given by 

𝑇 = ℎ(𝐲|𝐻1) − ℎ(𝐲|𝐻0) + g1(𝐲,𝜃|𝐻1) − g1(𝐲,𝜃|𝐻0) 

     = −
1

2𝜎𝑛2
𝐲1𝐻𝐲1 +

1
2𝜎𝑛2

𝐲0𝐻𝐲0 

           +(𝐔𝐻(𝜃)𝐲1)/𝜎𝑛2 − (𝐔𝐻(𝜃)𝐲0)/𝜎𝑛2                                                                                  (37) 

 
Note that − 1

2𝜎𝑛2
𝐲1𝐻𝐲1 and  1

2𝜎𝑛2
𝐲0𝐻𝐲0 are constant. Hence, the new detector is defined as 

𝜂 = 𝐔𝐻(𝜃)𝐲 = �
𝐔𝐻(𝜃)𝐔(𝜃) +𝐔𝐻(𝜃)𝐧     ;  𝐻1

𝐔𝐻(𝜃)𝐧                               ;  𝐻0
                                                                                   (38) 

and the optimal detector is given by 

𝜂 ≶ 𝜉′   ;   �𝜉′ = �𝜉 − 1
2𝜎𝑛2

𝐲0𝐻𝐲0 + 1
2𝜎𝑛2

𝐲1𝐻𝐲1� .𝜎𝑛2�                                              (39) 

where 𝜉′ is the new threshold. Since, the equation of radar system Gaussian noise was modeled by 

𝐧 ∼ 𝑁(0,𝜎𝑛2), so, the following equation is obtained as 

�
𝐔𝐻(𝜃)𝐔(𝜃) + 𝐔𝐻(𝜃)𝐧 ∼ N �𝐔𝐻(𝜃)𝐔(𝜃),𝜎𝑛2𝐔𝐻(𝜃)𝐔(𝜃)�

𝐔𝐻(𝜃)𝐧 ∼ N �0,𝜎𝑛2𝐔𝐻(𝜃)𝐔(𝜃)�                                               
                                                           (40) 
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According to the distribution of the test statistic,  

              

𝜂/�𝜎𝑛2𝐔𝐻(𝜃)𝐔(𝜃) ≜ 𝜂′ ∼ �𝑁(�𝐔𝐻(𝜃)𝐔(𝜃) 𝜎𝑛2⁄ , 1)
𝑁(0,1)                                

                                                               (41) 

 
and the threshold is replaced by  

𝜉′′ = 𝜉′/�𝜎𝑛2𝐔𝐻(𝜃)𝐔(𝜃)                                                                                                (42) 

 
From (41), the probability of the false alarm is given by 

𝑃𝐹𝐴 = 𝑃(𝐻1;𝐻0) = Pr{𝜂′ > 𝜉′′;𝐻0} = �
1

√2𝜋
exp �−

1
2
𝑡2�

∞

𝜉′′

𝑑𝑡 

          = 𝑄(𝜉′′)                                                                                                                                    (43) 

and 

 

𝜉′′ = 𝑄−1(𝑃𝐹𝐴)                                                                                                                      (44) 
 

where 𝑄(. ) and 𝑄−1(. ), denote the cumulative distribution function of the normal distribution and 

the inverse cumulative distribution function of the standard normal distribution, respectively. The 

detection probability is defined as 

𝑃𝐷 = 𝑃(𝐻1;𝐻1) = Pr{𝜂′ > 𝜉′′;𝐻1} 

      = �
1

√2𝜋
exp �−

1
2�

𝑡 − �𝐔𝐻(𝜃)𝐔(𝜃)/𝜎𝑛2�
2

�
∞

𝜉′′

𝑑𝑡 

     = 𝑄 �𝜉′′/�𝐔𝐻(𝜃)𝐔(𝜃)/𝜎𝑛2�                                                                                                         (45) 

B. Correlated waveforms 

The coherence correlation matrix is defined by 

𝐑𝑠 =
1
𝑁
�𝚽(𝑙)𝚽𝐻(𝑙)
𝑁

𝑙=1
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=

⎣
⎢
⎢
⎡

1
𝛽21

      
𝛽12
𝛽22

          
…
…

        
𝛽1𝑀𝑡

𝛽2𝑀𝑡…
𝛽𝑀𝑡1

      
…
𝛽𝑀𝑡2

       
…
…

         
…
1

     
⎦
⎥
⎥
⎤

 

= 𝑰𝑀𝑡 + 𝜷𝑀𝑡                                                                                                                      (46) 

where  𝛽𝑖𝑗 = 1
𝑁
∑ Φ𝒊(𝑙)Φ𝑗∗(𝑙)𝑁
𝑙=1  represents the complex correlation coefficient between the ith and jth 

waveform, 𝑰𝑀𝑡 and, 𝜷𝑀𝑡 denote the identity matrix and cross-correlation matrix, respectively. So, if 

the transmitted signals are ideally orthogonal, then 𝛽𝑖𝑗 = 0 and 𝐑𝑠 = 𝑰𝑀𝑡. If the transmitted 

waveforms are fully coherent, then  𝛽𝑖𝑗 = 1 and 𝐑𝑠 = 𝑰𝑀𝑡 + 𝜷𝑀𝑡. Because, there is a correlation 

between transmitter waveforms, the term 𝐔𝐻(𝜃)𝐔(𝜃) is written as 

𝐔𝐻(𝜃)𝐔(𝜃) = 

                      = ��
𝑀𝑡

𝐾
𝛽𝑠𝐮∗(𝜃𝑠)� ��

𝑀𝑡

𝐾
𝛽𝑠𝐮(𝜃𝑠)� 

                    = 𝑀𝑡
2

𝐾
𝑀𝑟𝑁𝛽𝑠2 + 𝑀𝑡

𝐾
𝑀𝑟𝑁𝛽𝑠2 ∑ ∑ 𝐚𝑡∗(𝑖)𝐚𝑡(𝑗)𝛽𝑖𝑗

𝑀𝑡
𝑗=1,𝑖≠𝑗

𝑀𝑡
𝑖=1                        (47) 

 
Substituting (47) in (45), probability of detection can be obtained. 

IV. SIMULATION RESULT 

In this section, simulation results are represented to compare the performances of target detection in 

phased-MIMO radars, phased-array radars and co-located MIMO radars. First, it is assumed that 

transmitted waveforms are ideally orthogonal and secondly, transmitted waveforms are correlated (not 

fully coherent or ideally orthogonal). Numerical results shown in this section are obtained by 10,000 

Monte Carlo simulation runs. It is assumed both transmit and receive arrays are uniform linear. Both 

arrays are half-wavelength inter-element spaced, the transmit and receive beams are both directed to 

60º angle. Moreover, the variance of white Gaussian noise used in these simulations is equal to 

𝛿𝑛2 = 1, and all received amplitudes are real and 𝜉 = 0.1 (𝜉 refers to the threshold and is equivalent to 

the desired probability of the false alarm). The number of radar pulses is 20 and the number of 

samples within one radar pulse is equal to 40. 
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                                                 (a)                                                                                                      (b)        
Fig. 2. Comparison of receiver-operating-characteristic (ROC) curves in GLRT detectors with 

(𝑎)𝑀𝑡=10, 𝑀𝑟=8 , and  (b) 𝑀𝑡=20, 𝑀𝑟=15   

 

A. Target detection with ideally orthogonal waveforms 

1) GLRT Detector 

In this case, the probability of the false alarm is on the interval 10−4 to 1. Fig. 2 shows that 

probability of detection in phased-MIMO radars is less than co-located MIMO radars and higher than 

phased-array radars with different number of subarrays. Increasing the number of subarrays results in 

improving target detection performance in the phased-MIMO radars. 

2) LRT Detector in Neyman- Pearson Criterion 

In this case, the probability of the false alarm is on the interval 10−4 to 1. Fig. 3 shows that 

performance of target detection in phased-MIMO radars is between co-located MIMO radars and 

phased-array radars with different number of subarrays. Increasing the number of subarrays results in 

improving target detection performance in the phased-MIMO radars.     

Comparing two detectors mentioned above, it can be seen that with the same probability of the false 

alarm, the probability of detection in LRT detectors is better than GLRT detectors in all three radars 

considered in this paper. 

B. Target detection with correlated waveforms 

In this case, the probability of the false alarm is assumed to be 10−4, 10−5, 10−6, 10−7 and 10−8. 

Figs. 4 present target detection performance for phased-MIMO radars transmitting correlated 

waveforms with cross-correlation coefficients being uniformly, given the fixed false alarm  
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                                              (a)                                                                                    (b)        
Fig. 3. Comparison of receiver-operating-characteristic (ROC) curves in LRT detector with 

(𝑎)𝑀𝑡=10, 𝑀𝑟=8, and  (b) 𝑀𝑡=20, 𝑀𝑟=15   
 

probabilities. Detection performance in the phased-MIMO radars grows with increasing the false 

alarm probability. It is assumed that the number of transmit and receive antennas equal 16 and 10 

respectively.  

   Detection performance in the phased-MIMO radars grows with increasing the false alarm 

probability, increasing correlation coefficients leads to increasing target detection performance in the 

phased-MIMO radars, and also increasing number of subarrays leads to increasing target detection 

performance in the phased-MIMO radars, Fig. 4. 

For example, if the number of subarrays equals the number of transmitter antennas, target 

detection performance of the phased-MIMO radars is similar to MIMO radars. 

 

V. CONCLUSION 

Phased-MIMO radars are recently introduced in the literature in order to improve parameter 

estimation capability of co-located MIMO radars. However, target detection performance of these 

radars has not been investigated yet. In this paper, the GLRT and LRT target detector are considered 

and target detection performance is analyzed in phased-MIMO radars transmitting fully orthogonal or 

correlated waveforms. Simulation results show that detection performance in the phased-MIMO 

radars is higher than the phased-array radars and lower than the MIMO radars with co-located 

antennas. Moreover, increasing the false alarm probability, correlation coefficients, and number of 

subarrays leads to growing target detection performance in the phased-MIMO radars. It can be seen 

that with the same probability of the false alarm, the probability of detection in LRT detectors is 

higher than GLRT detectors. 
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        (a)                                                                         (b) 
 

       

       (c)                                                                           (d) 

        

                                          (e)                                                                       (f) 
 

Fig. 4. Probability of detection versus the correlation index in LRT detector for different number of subarrays 
 in phased-MIMO radars: (a) with 3 subarrays (b) with 5 subarrays  (c) with 8 subarrays  

 (d) with 12 subarrays  (e) with 14 subarrays   f) with 16 subarrays. 
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