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Abstract- Cognitive radio (CR) network is an excellent solution to the 
spectrum scarcity problem. Cooperative spectrum sensing (CSS) has 
been widely used to precisely detect primary user (PU) signals. The 
trustworthiness of the CSS is vulnerable to spectrum sensing data 
falsification (SSDF) attack. In an SSDF attack, some malicious users 
intentionally report wrong sensing results to cheat the fusion center 
(FC) and disturb the FC’s global decision on the PU activity. In this 
paper, we introduce an effective data fusion rule called attack-aware 
optimal voting rule (AOVR) to confront the SSDF attack in the CSS 
procedure. In the beginning stages of the cooperative sensing, two 
important SSDF attack parameters are estimated and then applied in a 
conventional voting rule to acquire an optimal number of CR users to 
minimize the global error probability. Two estimated attack parameters 
include the probabilities of attack in both occupied and empty 
frequency bands. Simulation results confirm that the proposed attack-
aware approach achieves very good performance over the existing 
conventional cooperative sensing methods.  

  
Index Terms- Attack-aware; optimal voting rule; spectrum sensing data falsification 
attack; cognitive radio.  

 

I. INTRODUCTION 

Cognitive radio (CR) technology has been raised as a new technology to allow unlicensed 

secondary user to attainment the licensed frequency bands [1], [2]. In a CR paradigm, unlicensed 

secondary users recognize the vacant frequency bands and opportunistically utilize them in a dynamic 

way while not causing interference to licensed primary users (PUs) [3]. Hence, spectrum sensing 

plays an important rule for unlicensed users to access the frequency bands assigned to the licensed 

users in a CR network. Among the available spectrum sensing methods, energy detection (ED) is the 

simplest method because of not requiring prior knowledge of the received signal. In an ED scheme, 

each CR user locally senses the spectrum and determines the presence or absence of the PU signal [4]. 
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The local spectrum sensing result by a single CR user is untrustworthy as the CR users usually 

encounter with multipath fading, shadow fading, and hidden station problems [3], [5]. Therefore, 

cooperative spectrum sensing (CSS) has been proposed to employ spatial diversity and fulfill the high 

accuracy of PU signal detection [6]. In the CSS process, each CR user submits either one binary digit 

about its sensing decision or the measured energy to the FC. When the FC fuses the binary sensing 

decisions, it is called a hard-decision approach and if it combines the received energies, then it is 

called soft-decision combining approach [7].  

Unfortunately, the accuracy of the CSS process can be reduced affected by the spectrum sensing 

data falsification (SSDF) attacks [8]. In such an attack, some malicious CR users intentionally report 

wrong sensing decision to the FC in order to disrupt the global decision on the PU activity and 

deteriorate reduce the spectrum usage and notably reduce the CSS performance. To overcome this 

security attack, several studies have been conducted in the previous literature [9-17]. In the work 

reported by authors in [9], weighted sequential probability ratio test (WSPRT) was proposed that 

obtain an adaptive cooperative weight for each CR user and uses the sequential probability ratio test 

(SPRT). The WSPRT was also investigated in [10] where reputational weights were merged by 

location information to acquire a new dynamic weight for each CR user. An effective approach to 

separate abnormal local sensing reports from all of the incoming reports was presented in [11]. The 

received sensing reports were considered as samples of a random variable and the probability density 

function (pdf) of the random variables was obtained by a conjugate prior (CoP) technique. After 

calculation of the pdf, each received sensing report was checked for the normality based on 

confidence interval. If any received sensing result was detected as abnormal, then it was not allowed 

to cooperate in decision making on the PU activity. The normality test was also employed in [12] by 

performing a non-normal filtering and Shapiro-Wilk’s test. The authors in [12] claimed that their 

proposed method neither require the malicious users’ locations nor the pdf of malicious users’ 

reported data.  In [13], we proposed a new fusion scheme that estimates the percentage of attackers 

and then applies it in K-out-of-N fusion rule to obtain an optimal value of K that minimizes the Bays 

risk. In [14], we considered a credit factor for each CR user based on its sensing history. The 

malicious attackers and their strategies were simultaneously determined. Finally, a proper dynamic 

collaborative weight was allocated for each CR user to improve the cooperative sensing performance. 

We also proposed a new weighted defense approach against the massive SSDF attack [15]. Some 

anchor nodes were deployed and the cooperation weight of each CR is calculated based on the fitness 

of its local sensing report with anchor nodes’ global decision. The comprehensive research on the 

SSDF attack and defense strategies is also reviewed in [16] and [17].  

In this study, we have proposed a novel hard-decision combining scheme called attack-aware 

optimal voting rule (AOVR). More precisely, we developed our contribution that has presented in 

[13] and generalized to the  several  various  types of  malicious  attackers.  Furthermore, an analytical 
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Fig. 1. Network Model 

 

model of the SSDF attacks’ behavior is investigated by the mathematical expressions. In the proposed 

AOVR method, two important SSDF attack parameters are estimated and then innovatively applied in 

a conventional voting rule to improve the CSS performance. The estimated parameters include 

probabilities that the received report of a specific user (can be either benign or malicious), in both 

occupied and unoccupied frequency bands, to be falsified from “0” to “1” and “1” to “0”. We 

compare the performance of the suggested AOVR approach with conventional OVR under a different 

number of attackers. The proposed approach overcomes the SSDF attacks considerably better than the 

conventional method. 

II. SYSTEM MODEL 

The considered system model has one PU transmitter, one FC, and N cooperative CR users. It is 

assumed that among N CR users, there are Na malicious users. The proposed system model is shown 

in Fig. 1. 

In order to access available spectrum, energy detection scheme is used for local spectrum sensing. 

The local spectrum sensing problem can be expressed as a binary hypothesis test in the energy 

detection as follows [3]: 
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The hypothesis H0 states that there is no PU signal and hypothesis H1 indicates that PU signal is 

present. x(t) is the received signal of the CR users, S(t) is the PU’s transmitted signal, h(t) is the 

sensing channel gain, and n(t) is the additive Gaussian noise. 
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The false alarm and miss detection probabilities for the j’th CR user are j
faP  and j

mP  respectively 

[4], [18]. 
 

   0 1,  m
j j

fa j jP P x T H P P x T H                                                                                  (2)  

 

where xj is the decision statistics and indicates the received power of the j’th sensor, T is the local 

threshold and predefined by the constant false alarm rate (CFAR). The local error probability j
eP  of 

the j’th user can be written as:  
 

   10 0 1 0 1( ) ( ) ( ) ( )m
j j j

fae j jP P x H p H P x T H p H P p H pT P H                                       (3) 

 

where p(H0) and p(H1) respectively denote the actual idle and busy rate of the channel. 

The binary sensing results of the CR users, obtained from comparing the measured sample power xj 

with a predefined threshold T, are sent to the FC (“0” denotes the vacant frequency band and “1” 

means the presence of PU signal). We assumed that the communication channels between CR users 

and the FC are error-free. The received power at the CR user xj can be formulated as a log-normally 

distributed random variable and can be written as follows: 
 

( ) ( )j t jx P dB PL d                                                                                                                (4) 

 

where  PL(dj) is the log-normal shadowing path loss model and can be represented as: 
 

( ) ( )j jPL d PL d X                                                                                                               (5) 

 

where dj is the j’th user distance to PU transmitter, Pt(dB)  is the transmitted power level of the PU in 

dB, ( )jPL d  is the mean of PL(dj) and X  is a zero-mean Gaussian distributed random variable with 

standard deviation 1 . The parameter ( )jPL d  can be expressed by the HATA model which has been 

suggested by the IEEE 802.22 working group as the path loss model for a typical CR network 

environment. Assuming a rural environment, the average path loss model for a rural environment is 

given by [19]: 
 

 2( ) 27.77 46.05 4.78( ) 13.82 1.1 0.7 (44.9 6.55 )j c c te c re te jPL d logf logf logh logf h logh logd            (6) 
 

where fc is the carrier frequency, hte and hre are the effective transmitter and receiver antenna height, 

respectively. When hypothesis H1 holds, the received power of the j’th user xj(dB) is a Gaussian 

distributed random variable with mean 1 )( ) (t jPP dB Ld    and standard deviation 1 . We assume 

that the CR users are deployed in a small area and the PU transmitter is relatively located far from the 

CR network, thus, differences in the averaged received powers due to path loss are negligible and the 

parameter 1  is identical for all CR users. The mean and variance of the Gaussian noise are also the 
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same among all CR users. When hypothesis H0 holds, the received power of each user is a Gaussian 

random variable with mean 0  and standard deviation 0 . Therefore, xj(dB) is expressed as a 

Gaussian distributed as follows: 
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III. OPTIMAL VOTING RULE 

As mentioned before, the local measured power of the j’th CR user xj is compared with a predefined 

threshold T and then a binary decision uj is transmitted to the FC. When the measured power is greater 

than the local threshold T, the decision about channel status is occupied and binary sensing report, uj, 

is equal to 1; otherwise, the frequency band is determined to be vacant and uj is set to be 0. In the K-

out-of-N fusion rule, all of the binary received reports are summed up in the FC and compared with 

the threshold K, obviously, the OR rule corresponds to the case of K=1, majority and AND rules 

correspond to the case of K=N/2 and K=N, respectively. The global false alarm and miss detection 

probabilities of the K-out-of-N rule are respectively given by [18]  
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where two parameters Pfa and Pm are the local false alarm and miss detection probabilities, 

respectively. These parameters are computed as: 
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where Q(.) is the Q-function for standard normal distribution. It is assumed that the location and 

transmission power level of the PU tower are known for the FC. Therefore, the mean value of the 

received power is known. The global error probability can also be defined as 
 

     0 1( ) ( )e fa mQ K Q K p H Q K p H                                                                                   (10) 

 

Assuming that Qe(K) represents a single minimum, the optimum K will be obtained based on the 

following optimization problem 
 

arg min ( ( ))opt K eK Q K                                                                                                         (11) 
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By substituting (8) and (9) into (10), the global error probability Qe(K) is obtained and the equation 

(10) can be expanded by performing the discrete operation on Qe(K) as 
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The integer value for K is obtained as the following equation 
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Taking logarithm on (13) and rearranging in term of Kopt gives: 
 

0

01opt

N
k








                                                                                                                        (14) 

 

where 
 

0 1
0 0

log( / (1 ))log( ( ) / ( ))
;

log( / (1 )) log( / (1 ))
fa m

m fa m fa

P Pp H p H

P P P P
 


 

 
                                                                               

 

IV. THE PROPOSED ATTACK-AWARE OPTIMAL VOTING RULE (AOVR) 

There are three different strategies for the attackers: “always yes” (AY), “always no” (AN), and 

“always false” (AF) strategies. In AY strategy, the malicious attackers, without sensing the spectrum, 

always report the presence of the PU signal. In this case, the probability of false alarm is increased 

and the spectrum resource is wasted. The “AN” attackers, without performing spectrum sensing, 

always submit a local decision saying that “there is no PU signal”; hence, the FC may be deceived and 

allow the CR users to access the channel while in fact, the PU signal is present. The “AF” attackers 

perform spectrum sensing and send the opposite values of their sensing results to the FC. Therefore, 

they always cause FC to make a wrong sensing decision. In this case, both spectrum waste and PU 

interference are possible. In the presence of SSDF attacks, the local spectrum sensing result of the j’th 

CR user is denoted by vj and the CR user sends its one-bit output uj to the FC. For benign CR user, the 

sensing result vj and report uj are the same. However, for the malicious attacker, the sensing result vj 

can be different from report uj, and it depends on the attack strategy. The SSDF attack model can be 

defined in general as follows: Firstly, the malicious attacker makes its local binary decision vj. Then, it  
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Table.1. Attack probabilities of several different CR users 

Attack 

Probabilities 
“Benign User” “AY” Attacker “AN” Attacker “AF” Attacker 

“Probabilistic” 

Attacker 

P0 0 1 0 1 0< P0<1 

P1 0 0 1 1 0< P1<1 

 

 

utilizes two attack probabilities P0 and P1, under two hypotheses H0 and H1, respectively, to decide 

whether to perform an attack. If it decides to attack, it will change its sensing decision to report with 

probability P0 or P1 depending on the sensing result vj. Such an attack model introduces a smart SSDF 

attack model. Obviously, for “AY” attacker two attack probabilities P0 and P1 are always 1 and 0, 

respectively. For “AN” attacker we have always P0=0 and P1=1. Finally, for “AF” malicious attacker, 

these values are the same and equal to 1. Two possible values of P0 and P1 for different types of 

attackers are listed in Table. 1 for convenience. 

   The probability functions of sensing report and sensing result for the j’th CR user (benign or 

malicious) can respectively be formulated as: 
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and 
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Assuming that among N CR users there are Na malicious users, two attack parameters α and β are 

defined as attack probabilities for a given user j and can be written as follows: 
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The parameter sj indicates the user type, which can be malicious (M ) or benign (B ). As mentioned 

before, 
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Assuming that the attack strategy is the same for all malicious attackers, thus, P0 and P1 are 

independent from index j. 

When the number of cooperative CR users, N, is large enough, we have 
 

( ) a
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N
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Two attack parameters α and β are the probabilities that a given user j to launch an attack. When 

there is no SSDF attack and all CR users are benign, we have α=β=0. In the presence of “AY” 

attackers, β=0 and for CR network with “AN” attackers, α=0. Finally, for “AF” attackers, two 

parameters α and β are the same. Considering the attack parameters, the equation (16) is simplified to: 
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Applying the K-out-of-N rule, the global false alarm and miss detection probabilities are 

respectively given by 
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where 
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Like the equation (12), we have 
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V. PRACTICAL CONSIDERATION AND LIMITATION 

Here, assuming the attack strategy and without any prior information about the attack population 

and FC’s final decision, two attack parameters α and β are estimated. The estimation of these 

parameters is based on the received sensing reports from the CR users. The average of the received 

reports m and its mathematical expectation E(m) are obtained as [20] 
 

1 1

1 1
; ( ) ( )

N N

j j
j j

m u m u
N N 

                                                                                     (22) 

where 

1

0

( ) ( ) ( 1)
j

j j j j
u

u u P u P u


                                                                                                  (23) 

With regard to equation (19),  
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Regarding the equations (17) and (18), 
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from the equation (24), the values of α and β are obtained as follows: 
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where the parameter  is defined as follows:  
 

0 1( ) (1 ) ( )fa mP p H P p H       
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Fig. 2. The convergence of attack parameters (α=0.6, β=0.2) 

 
 

VI. NUMERICAL RESULTS AND DISCUSSIONS 

To evaluate the performance of the proposed AOVR approach, computer simulation results are 

obtained over 104 runs in MATLAB software. The PU transmitter with p(H1)=0.2 is set to a distance 

of D=3km from the center of the CR network. The transmitted power of the PU is supposed to be 200 

mW and the noise power 0  is assumed to be -106 dBm. The standard deviations of the log-normal 

shadowing path loss model ( 1 ) and noise ( 0 ) are considered as 12 and 10, respectively. Each 

receiver has a typical sensitivity of -94 dBm, which is the minimum power for a signal to be detected 

[9]. It is also assumed that the carrier frequency of the PU signal is 617 MHz and the effective heights 

of the transmitter and receiver antennas are 100m and 1m, respectively. We also fix the total number 

of CR sensors, N=30 while varying the number of malicious, from 0 to 18, corresponding attack’s 

percentage (Na/N) changes from 0 to 60%. 

Fig. 2 shows the convergence of two attack parameters α and β. The estimated values are converged 

to the constant values after applying almost 100 rounds of spectrum sensing. At the beginning of the 

simulation, almost 100 sensing intervals are performed to estimate of two attack parameters α and β 

and then the obtained parameters are applied in the proposed method to improve the cooperative 

sensing performance. 

Fig. 3 displays the total error probability versus parameter K for benign users and multiple 

attackers. As shown in the figure, for a given attack strategy there is an optimal value for K that  
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Fig. 3. The total error probability versus K for benign and malicious users 

 

 

 
Fig. 4. The total error probability versus attack population for several different types of attackers 

 

 

minimizes the total error probability. Therefore, we plan to obtain the optimal value for K so as to 

minimize the global error probability. 

The total error probability versus the attack population is shown in Fig. 4. In this case, AY, AN, AF 

and probabilistic (smart) attackers are considered. Obviously, the error probability is increased with 

increasing the percentage of malicious attackers. Among these attackers, the error probability of AY  
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Fig. 5. The total error probability versus attack population 

 

 
Fig. 6. The total error probability versus attack population 

 

and AN attackers increased to 0.8 and 0.2 (corresponds to p(H0) and p(H1)) respectively. 

Figs. 5 and 6 display the total error probability versus attack population. As shown in these figures, 

in conventional OVR (the case that there is SSDF attack and the FC is not aware), increasing the 

attack population dramatically increases the error probability. On the contrary, in the proposed 

AOVR, increasing attack population causes a small change in the rate of total error probability. 

Fig. 7 depicts the total error probability versus attack parameter P0 in P1=0.3 and P1=0.7 for 

conventional OVR and proposed AOVR methods. As shown, the proposed AOVR method  
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Fig. 7. The total error probability versus attack parameter 

 

 
Fig. 8. The total error probability versus attack parameter 

 

remarkably improves the performance of CSS under smart SSDF attacks. Fig. 8 also shows similar 

results versus attack parameter P1 when the parameter P0 is set to 0.3 and 0.7.    
 

 

VII. CONCLUSION 

In this study, to mitigate the destructive impact of spectrum sensing data falsification (SSDF) 

attacks, a novel secure cooperative spectrum sensing (CSS) scheme called attack-aware optimal 
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voting rule (AOVR) was proposed. An analytical model of the SSDF attack was also investigated. In 

the initial stages of simulation, two important attack parameters were estimated and then applied in 

conventional OVR to improve the CSS performance. Two estimated attack parameters include the 

probabilities of SSDF attack in both occupied and unoccupied frequency bands. It was concluded that 

the proposed AOVR is a robust defense strategy against SSDF attacks, especially, for CR networks 

located in hostile environments. 
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