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Abstract— In this paper, Ultra-wideband (UWB) multiple access relay 

channel with correlated noises at the relay and receiver is investigated. 

We obtain outer and inner bounds for the IEEE 802.15.3a UWB 

multiple access relay channel, and also, a diversity gain bound. Finally, 

we evaluate some results numerically and show that noise correlation 

coefficients play important role in determining relay position.  

 
Index Terms— Ultra wideband, multiple access relay channel, diversity gain, 

outage probability.  

 

I. INTRODUCTION 

Information theoretic performance analysis of UWB communication systems is of practically 

importance, due to UWB extremely high data rates and diversity, coexistence capability with other 

wireless networks, accurate position location and ranging, no significant multipath fading, multiple 

access, covert communications and possible easier material penetration.  

Possibly extension of discrete alphabet channels results to continuous alphabet versions has been of 

practically and theoretically importance. For example in addition to widely used Gaussian Shannon 

channel, there are many works such as Costa theorem [1] as the Gaussian version of discrete alphabet 

Gelfand-Pinsker theorem [2] and many other works related to fading or Gaussian version of discrete 

alphabet relay channels. In [3], the discrete alphabet degraded relay channel has been extended to 

Gaussian version. In [5] and [6], the previous results for discrete alphabets and memory less relay 

channel have been extended to UWB relay channel. In [5], authors derive bounds on the expected 

capacity and outage capacity of a three-node relay network with independent noises for UWB 

communications. In [6], a general achievable rate, two special capacity results and the max-flow min-

cut outer bound for the UWB relay channel with correlated noises at the relay and destination are 

obtained.  
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Our work: We obtain  outer and inner bounds  for the IEEE 802.15.3a UWB multiple access relay 

channel with correlated noises at the relay and receiver. We also  obtain outage probability bound and 

diversity gain bound for UWB multiple access relay channel. At the last, we evaluate some results 

numerically. 

Notation: Throughout the paper (.)Re , (.) , (.)var  and (.)cov  denote real part, expectation, 

variance and covariance operations, respectively. x    returns the largest integer x . (.)diag  builds 

a diagonal matrix and ( ) log(1 )C x x  when x is complex. 

II. PRELIMINARIES 

In this section, we review relay channel, multiple access relay channel and IEEE UWB channel 

model. We introduce IEEE ultra-wideband multiple access relay channel at the end of this section.  

A.  Relay Channel (RC) 

The RC is a three terminal channel consisting of a source node, a destination node and one node 

called the relay. The role of the relay node is to improve the overall performance of the 

communication between the source and destination such as the coverage area and ransmission rate.  

The RC consists of four finite sets: R , 1 , D , and R  and a collection of conditional probability 

mass function 1( , | , )D R Rp y y x x  on D R , for all 1 1( , )Rx x   ; 1x  and Rx  are the channel 

inputs, which are sent by the transmitter and the relay, respectively; and Dy  and Ry  are the channel 

outputs of the receiver and the relay. The channel is assumed to be memoryless and also the relay 

encoder is supposed to be strictly causal, which means that the RC input Rx  at a given moment ( t ) 

depends only on the past relay observations of the transmitted messages, which is written as, 

 
1

, ( ), 1,2, ,t

R t t Rx f y t n   (1) 

                                                

A (2 , )nR n  code for the RC consists of a set of integers 1 {1,2, ,2 }nR , an encoding function that 

maps each message 1 1w   into a codeword, 1 1 1: nx   and a set of relay functions 1{ }n

t tf   such 

that 
1

, ( )t

R t t Rx f y  , 1 t n   and a decoding function 1: n

Dg  . A rate R  is achievable if there 

exists a sequence of (2 , )nR n  codes with 
1 1

( )

1 1

1
{ ( ) |  sent} 0

2

n
n n

e w DnR
P Pr g Y w w



    , assuming 

a uniform distribution over the messages. Channel capacity C  is defined as the supremum over the 

set of achievable rates. 

Furthermore, another important characteristic of RC is the employed relaying strategy, which can be 

partial decode and forward (PDF), decode and forward (DF), compress and forward (CF),  amplify 
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Fig. 1. UWB Multiple-access relay channel 

 

and forward (AF) and noisy network coding. 

The RC with PDF and DF Strategies: In PDF strategy, the relay decodes some information (U , 

auxiliary random variable) of the message sent by the source, where U  may be a part or an index of 

the message. In DF strategy, the relay decodes the whole of message  ( 1U X ) and cooperates with 

the sender to help the destination in decoding.  This strategy is close to optimal when the source-relay 

channel is excellent, which practically happens when the source and relay are  physically near each 

other. In this work, relay uses the DF strategy like [11].  

B. Multiple-Access Relay Channel 

 
1) Discrete Memory less Multiple-Access Relay Channel:  

The 2 -source discrete memoryless multiple-access relay channel consists of 3  inputs; ( 1,2)kX k  , 

and RX  from the sources and the relay, respectively, and two output RY , and DY  at the relay and 

receiver, respectively. This model is defined by  1 2 1 2{( ), ( , | , , ), }R R D R R Dp y y x x x   , 

where 1 2,  and R  are the input alphabets; R  and D  are the output alphabets. This model 

might fit a situation in wireless sensor networks where sensors (the sources) are too weak to 

cooperate, but they can send their data to more powerful nodes that form a “backbone” network [7]. 

C. IEEE UWB Channel Model 

 IEEE 802.15.4a group published a channel model for UWB communications [8]. The channel is 

modeled as a linear system with an impulse response as follows, 

       

 ,

1 1

, ,

0 0

( ) ( )i l

L M
j

i l l i l

l i

h t a e t T


  
 

 

    (2) 

where lT  and ,i l  represents the cluster and ray arrival times, respectively, and they have Poission 

distributions. The factor   jointly models the pathloss, shadowing and antenna insertion loss. ,i la  is 
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the gain of the i
th
 path in the l

th
 cluster and finally ,i l  is the complex baseband phase of each 

multipath component. L  is the number of clusters and M  is the number of rays in each cluster. 

 The complex baseband communication system can be represented as a discrete-time vector channel 

where the transmitter sends a complex vector 0 1( , , )T

Kx x x   and the destination receives an 

output vector 0 1( , , )T

Ky y y   given by, 

         

 
1

0

, 0, , 1
K

i k i k i

k

y g x z i K






     (3) 

where, 

   

 ,

,

2

, , ,

, : /

1
 , ( , )c i l

i l s

j f d

k i l i l l i l s

i l d T k

g e d T T
W


 



  

     (4) 

  

and 0 1( , , )T

Kz z z   is complex Gaussian with circularly symmetric independent components 

~ (0, )iz N  and K' is the memory length. Since ,{ }i l  are zero-mean and uncorrelated; therefore, 

{ }kg  are zero-mean and uncorrelated. The channel state vector g  stays fixed within each block of 

data transmission and change in an independent and identically distributed fashion from one block to 

another, also we assume that the communication is coherent, i.e., the receiver knows the  { }kg . The 

size of each block, K , is constrained by the channel coherence time and can be at most equal to c

s

T

T
 

where cT  is coherent time and sT  is sampling period that it is inverse of the bandpass channel 

bandwidth. In [9],  a frequency domain model of the above UWB channel is obtained by taking DFT 

from both sides of (3) as follows, 

 , 0,1, , 1i i i iY G X Z i K     (5) 

where the vectors G  are the DFT of vector of complex baseband channel coefficients 

0 1 1( , , , )Kg g g g . 

D. UWB Multiple Access Relay Channel Model 

1 1,0 1, 1( , , )T

KX X X , 2 2,0 2, 1( , , )T

KX X X  denote the K-point DFT of the transmitted UWB 

signals from sender 1 and sender 2 to relay and destination and and ,0 , 1( , , )T

R R R KX X X  denotes 

the K-point DFT of the transmitted UWB signals from relay to destination. And similarly 

,0 , 1( , , )T

R R R KY Y Y  and ,0 , 1( , , )T

D D D KY Y Y  represent the DFT of the received signals at 
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relay and destination, respectively. Then by this frequency domain model, we can formulate the  

input-output relation of UWB-MARC as, 

 1 1 2 2( ) , 0,1, , 1Ri R i i R i i RiY G X G X Z i K      (6) 

 1 1 2 2( ) , 0,1, , 1Di D i i D i i RDi Ri DiY G X G X G X Z i K       (7) 

where the noise terms { }RiZ  and { }DiZ  are i.i.d with ~ (0, )RN  and ~ (0, )DN , respectively 

for the i
th
 received sample. The vectors G  are the DFT of vectors of complex baseband channel 

coefficients 0 1( , , )T

Kg g g  related to each link. This model is shown in Fig. 1. 

III. MAIN THEOREMS 

In this section, we obtain and prove two main theorems. In one of them, we obtain an outer bound and 

in another, we obtain an inner bound for UWB multiple access relay channel. 

A. UWB multiple access relay channel inner bound: 

 An  achievable rate region for K-block delay constrained  multiple-access relay channel is given by  

[11]: 

 1 2{( , ) :R R  

     
1 1

1 2

0 0

1 1
min ( , ; | , ), ( ; | , , , )( )}C C C

i i i

K K

t i Ri Di Si Ri i i RiS S S
t S i i

R I X X Y V X I X Y V V X X
K K

 

  

    (8) 

where {1,2}S  , 
CS  is complement of S  in set {1, 2} and the union is taken over all 

21

1 2 1 2 1 2 1 2 1 2

0 1

( , , , , , , ) ( , | , , ) ( ) ( ) ( | , ) ( | )
K

R D R Di Ri i i Ri i i Ri i i ki ki

i k

p p y y x x x p v p v p x v v p x v


 

 x x x v v y y   (9) 

where 1iV  and  2iV  are independent random variables with finite alphabets to help the sources 

cooperate with the relay. Now, we extend these results to the UWB version in the following theorems. 

.Theorem1  A  delay-constrained  general achievable rate region for  frequency selective block 

fading ultra-wideband  multiple-access relay channel is given by:  

 1 2{( , ) :R R   

               
1 2 1 2, , 0,..., 1

1 1
1 2

, , 0 0

1 1
min ( ), ( )( )max

i i i i

K

i K

K
i i

t

t S i iR D

R C C
K N K N   

 

 

 

 

    (10) 

where, 

2

1 | |i Rti ti t

t S

G P 


  

2 2 *

2 (| | | | 2 Re{ })i RDi ti R Dti t t R Dti RDi ti ti

t S

G P G P PP G G   


    
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and {1,2}S   and 
CS  is complement of S  in set {1, 2}. 

 

:Proof  

We assume that the sources and relay nodes transmit their signals per complex baseband sample with 

following constraints: 

 
1 1 1

2 2 2

1 1 2 2

0 0 0

1 1 1
| | , | | , | |

K K K

i i Ri R

i i i

X P X P X P
K K K

  

  

      

Let 1 1 2 2 1 2~ (0, ), ~ (0, ), ~ (0, ), ~ (0,1), ~ (0,1),Ri R i i i iX P X P X P V V  

1 1 1 2 2 2~ (0, ), ~ (0, )i i i iM P M P   where  1 2 1, ,i i iM M V  and 2iV   are mutually independent. 

We generate random variables 1 2,i iX X  and RiX  according to (9) and as following way, 

 1 1 2 2( )Ri R i i i iX P V V    (11) 

 , 1, 2ki ki ki k kiX M P V k    (12) 

where 1iM  and 2iM  carry the fresh information and 1V , 2V  and the relay input coherently carry the 

refinement information.   | | 1 | |ki ki    and 1 2| | | | 1i i   . These coefficient distribute the 

sources power between fresh information and refinement information.  

Now, we generate random code as following: 

1) Generate 2 knR
 independent identically distributed  kV , according to (0, )I  and index 

them as ( )kmkV , [1: 2 ], 1,2knR

km k  . 

2) Generate 2 knR
 independent identically distributed  kM , according to (0, )MkC  and index 

them as ( )kwkM , [1: 2 ]knR

kw   and 0 ( 1)( , , ), 1,2Mk k k k K kdiag P P k   C . 

3) For each ( )kmkV , generate 2 knR
 conditionally  independent  kX . Index them as 

( | )k kw mkX , [1: 2 ]knR

kw   where 0 1( | ) [ , , ] ( ) ( )k k k K k kw m P m w    k k kX V M . 

4) For each 1 2{ ( ), ( )}m m1 2V V , choose one RX . Index them as 1 2( , )m mRX , [1: 2 ]knR

km  , 

where  10 1, 1 2,0 2, 11 2 1 2( , ) [ , , ] ( ) [ , , ] ( )K KR Rm m P m P m       R 1 2X V V  

where   denotes an element by element matrix multiplication. 

For brevity, we prove only two expressions. 

  1 1 2 2 1 2 2 1 2 1 2( ; | , , , ) ( | , , , ) ( | , , , , )i Ri i i Ri i Ri i i Ri i Ri i i Ri i iI X Y V V X X h Y V V X X h Y V V X X X   

                                           1 1 2 2 1 2 2(( ) | , , , )R i i R i i Ri i i Ri ih G X G X Z V V X X    

                                           1 2 1 2( | , , , , )Ri i i Ri i ih Y V V X X X  
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                                           1 1 1 2 2( | , , , ) ( )R i i Ri i i Ri i Rih G X Z V V X X h Z    

                                           1 1 1 1 1 1 2 2( ( ) | , , , ) ( )R i i i i Ri i i Ri i Rih G M PV Z V V X X h Z     

                                           1 1 1 2 2( | , , , ) ( )R i i Ri i i Ri i Rih G M Z V V X X h Z    

                                           
2

1 1 1log 2 (| | ) log 2 ( )R i i R Re G P N e N      

Also, we have: 

1 2 1 2( , , ; ) ( ) ( | , , )i i Ri Di Di Di i i RiI X X X Y h Y h Y X X X   

                               2 2 2

1 1 2 2log 2 (| | | | | |D i D i RDi Re G P G P G P    

                                 * *

1 1 1 1 2 2 2 22 Re{ } 2 Re{ } ) log 2 ( )R D i RDi i i R D i RDi i i D DPP G G P P G G N e N         

1 2( , , ; )i i Ri DiI X X X Y                

2 2 2 * *

1 1 2 2 1 1 1 1 2 2 2 2| | | | | | 2 Re{ } 2 Re{ }
( )

D i D i RDi R R D i RDi i i R D i RDi i i

D

G P G P G P PP G G P P G G
C

N

      
  

B. UWB multiple access relay channel outer bound: 

 Theorem 2. A K - block delay constrained form for the max-flow min-cut outer bound on the 

capacity region of the multiple access relay channel  can be expressed as [11]: 

1 2{( , ) :R R   

      
1 2 1 2, , 0,..., 1

1 1
1

2
, , 0 0

1 1
min ( ), ( )( )max

i i i i

K K
i

t i

t S i iDi K

R
K N K

C C
   




 

   

     (13) 

where, 

2 2 *

1 1| | | | 2 Re{ }i Dti RDi R t R Dti RDi ti i i

t S

G Pt G P PP G G   


   
2 2 *

2 2

(1 ) | | | | Re{ | |}
( 2 )

1 | |

ti i Dti Rti Rti Dti zi
i t

t S zi D R D R

G G G G
P

N N N N

  





  


  

and {1,2}S   and 
CS  is complement of S  in set {1, 2}. Also, 0i   when {1}S   or {2}S   and 

1 2 1 2 1 22 { }i i i D i D i i iP P G G    when {1,2}S  . 
( )Di Ri

zi

D R

Z Z

N N
   is correlation coefficient 

between DiZ  and RiZ . 

Corollary 1. As seen easily, the outer bound in [12] is  obtained form (13) by removing one sender. 

:Proof  The proof is a direct consequence of the max-flow min-cut theorem. The cut sets for 

MARC are illustrated in Fig. 2. Across the cut 1C , the maximum rate of information transfer 

is bounded by: 
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1

1 1 2

0

1
; , | , ( )

K

i Di Ri i Ri

i

R I X Y Y X X
K





   

where, 

 1 2 2 1 2; , | , ( , | , ) ( , | , , )( )i Di Ri i Ri Di Ri i Ri Di Ri i i RiI X Y Y X X h Y Y X X h Y Y X X X   

                                       1 2( , | ) ( , | , , )Di Ri Ri Di Ri i i Rih Y Y X h Y Y X X X   

                                       
2 2log((2 ) (det ( , | ))) log((2 ) (det ( , )))Di Ri Ri Di Rie cov Y Y X e cov Z Z    

                                        

2 *

2

* 2

( | ) ( | )
log((2 ) det

( | ) ( | )

Di Ri Di Ri Ri

Ri Di Ri Ri Ri

Y X Y Y X
e

Y Y X Y X


 
  

 
 

                                          2log((2 ) (det ( , )))Di Rie cov Z Z  

                                        
2 2 * 2

1 1 1 1 1 1 12

* 2 * 2 2

1 1 1 1 1 1 1

| | (1 ) (1 )
log((2 ) det

(1 ) | | (1 )

D i Ri D R i D i Ri R D zi

R i D i Ri R D zi R i Ri R

G P N G G P N N
e

G G P N N G P N

  


  

    
 
     

 

                                         
2 2log((2 ) (1 )R D zie N N    

where, 

1
1 1

1

( )i Ri
Ri i i

R

X X

PP
    . So, we have, 

2 2 *

1 1 1 1 1
1 2 1 2

(1 ) | | | | Re{ | |}
; , | , log 1 ( 2 )

1 | |
( ) ( )i i D i R i R i D i zi

i Di Ri i Ri

zi D R D R

G G G G
I X Y Y X X P

N N N N

  




   


 

Similarly, by considering 2C , 

2 2 *

2 2 2 2 2
2 1 2 2

(1 ) | | | | Re{ | |}
; , | , log 1 ( 2

1 | |
( ) ( i i D i R i R i D i zi

i Di Ri i Ri

zi D R D R

G G G G
I X Y Y X X P

N N N N

  




   


 

Now, by considering 1C  , we have 

 
1

1 1 2

0

1
, ; |( )

K

i Ri Di i

i

R I X X Y X
K





   

where, 

1 2 2 1 2, ; | ( | ) ( | , , )( )i Ri Di i Di i Di i i RiI X X Y X h Y X h Y X X X     

                                
2 2 *

1 1 1 1 1log(2 (| | | | 2 Re{ } ))D i RDi R R D i RDi i i De G P G P PP G G N       

                                    log(2 )DeN  

So, we have 
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Fig. 2. Illustration of cut sets for MARC 

 

 

2 2 *

1 1 1 1 1

1 2

| | | | 2 Re{ }
, ; | log(1 )( ) D i RDi R R D i RDi i i

i Ri Di i

D

G P G P PP G G
I X X Y X

N

  
   

Similarly, by considering 2C  , we have: 

2 2 *

2 2 2 2 2

2 1

| | | | 2 Re{ }
, ; | log(1 )( ) D i RDi R R D i RDi i i

i Ri Di i

D

G P G P P P G G
I X X Y X

N

  
   

 Now, by considering 3C , we have 

   

 
1

1 2 1 2

0

1
, ; , |( )

K

i i Di Ri Ri

i

R R I X X Y Y X
K





    

where, 

1 2 1 2, ; , | ( , | ) ( , | , , )( )i i Di Ri Ri Di Ri Ri Di Ri i i RiI X X Y Y X h Y Y X h Y Y X X X     

                                       2 2log((2 ) (det ( , | ))) log((2 ) (det ( , )))Di Ri Ri Di Rie cov Y Y X e cov Z Z    

So, we have 

1 2, ; , | log(1 )( )i i Di Ri Ri i iI X X Y Y X A B          

where, 

2 2 *

1 1 1 1 1
1 2

(1 ) | | | | Re{ | |}
2

1 | |
( )i i D i R i R i D i zi

i

zi D R D R

G G G G
A P

N N N N

  




  


 

2 2 *

2 2 2 2 2
2 2

(1 ) | | | | Re{ | |}
2

1 | |
( )i i D i R i R i D i zi
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Lastly, across the cut 3C  , the maximum sum rate of information transfer is bounded by: 



Outage Probability Bound and Diversity Gain for Ultra-Wideband Multiple... 31 

 

   

 

 
1

1 2 1 2

0

1
, , ;( )

K

i i Ri Di

i

R R I X X X Y
K





    

1 2 1 2, , ; ( ) ( | , , )( )i i Ri Di Di Di i i RiI X X X Y h Y h Y X X X     

                                2 2 2

1 1 2 2log(2 (| | | | | |D i D i RDi Re G P G P G P    

                                   
* *

1 2 1 2 1 2 1 1 12 Re{ } 2 Re{ }D i D i i i i R D i RDi i iPP G G PP G G       

                                   
*

2 2 22 Re{ } ) log(2 )R D i RDi i i D DP P G G N eN      

and, 

1 2 1 2, , ; ( ) ( | , , )( )i i Ri Di Di Di i i RiI X X X Y h Y h Y X X X     

                                2 2 2

1 1 2 2log(2 (| | | | | |D i D i RDi Re G P G P G P    

                                   
* *

1 2 1 2 1 2 1 1 12 Re{ } 2 Re{ }D i D i i i i R D i RDi i iPP G G PP G G                                    

                                   
*

2 2 22 Re{ } ) log(2 )R D i RDi i i D DP P G G N eN      

So, we have 

 1 2   , , ; log(1 )( ) i i
D i D i Ri Di

D

A B
I X X X Y

N

 
   

 where, 

2 2 2

1 1 2 2| | | | | |i D i D i RDi RA G P G P G P     

*

1 2 1 2 1 2Re{ }i D i D i i i iB PP G G            

       
* *

1 1 1 2 2 22 Re{ } 2 Re{ }R D i RDi i i R D i RDi i iPP G G P P G G      

 

IV. OUTAGE PROBABILITY ANALYSIS 

Outage probability: Outage probability is an important measure of performance of communication 

systems such as mobile systems and can be used as a minimum quality of service requirement. The 

outage probability implies that there is a nonzero probability that a given transmission rate cannot be 

supported by the channel. 

A. Statistical properties of the channel frequency coefficients 

If  ka  is a random variable with Nakagami distribution, then gamma probability density of 
2

ka  is 

given by [13]: 
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 (14) 

where the mean and variance of 
2

ka  are given by 

 
2

2 2[ ] , [ ] k
k k k

k

a Var a
m


   (15) 

The sum of  L  independent gamma terms, 
2

1

L

k

k

s a


 , was approximated by an equivalent gamma 

distribution with the following parameters [14]: 
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m

m
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
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

 






 (16) 

.Lemma 1  The linear combination of independent gamma terms, 
2

1

L

k k

k

s a 


 , can be 

approximated by an equivalent gamma distribution with the following parameters: 
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,
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m

m

 















 






 (17) 

:Proof  The proof is omitted for brevity. 

 We assume that the multipath components arrive at uniform delays, so kg  in (4) reduces to one term 

 ,

,

~

, , : ( )/
|i l

l i l s

j

k i l i l T T k
g a e






   
  (18) 

Therefore, { }kg  becomes zero. As G  are the DFT of g ; consequently, { } 0iG  . Also, 

1 2 1 2, , ,D D R RG G G G  and RDG  are independent, so { } 0mi niG G   for each 

, 1, 2, 1, 2,m n D D R R RD . 

The channel coefficient ,i la  has Nakagami distribution ([8]) with parameters ,i lm  and  

 

,

10
,

1 2

1
10

[(1 ) 1]

i l l cluster

l l

T M

i l

l

e e





   

 


 
  

 (19) 

in which lT  is the arrival time of the l th
 cluster and ,i l  is the arrival time of the i th

 ray in the l th
 

cluster relative to the cluster arrival time lT . clusterM  (cluster shadowing) is a zero mean normally 

distributed variable with standard deviation cluster  (cluster shadowing variance), l  and l  are the 
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intra-cluster decay time constant and mean energy of each cluster, respectively, and 1 2,   are the ray 

arrival rates, and    is mixing factor ([8]). 

And from [5], we have: 

 

 
2 ( 1)1 1

2 2

,

0 0

( (10)) 1 1
{ | | } ( ) .

200 1 1
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 

 

 

  


  
  (20) 

where 1 2

1 2

0 0

(1 )

1 1

  


 
 


  

 

, 
1






 




 (  is inter-cluster arrival rate ([8]), L  denotes the 

mean number of clusters, 
0 1 2

1

[(1 ) 1]


   


  
 and 

LOS  is equal to 1 for LOS connection and 

equal to   for NLOS connection. Using the 0  is for omitting the dependency of l  and l  to l  

([5],[8]). 

The variance of kg  can be calculated as follows [15]: 

   ,
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( 1)1 1
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M Le  

 
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

  
 (21) 

where PL  is the pathloss and it is assumed that   models only the pathloss effect and the effect of 

shadowing and antenna insertion loss are neglected. According to the Parseval's relation, we have 

  

 
( 1)1 1

2 2 2 ( ) 2

, , , ,

0 0 0 ,

1
| | | | | | | |

2

mKK K
m

m k m k m k i l

k k k i lm

G g g a
PL

  

  

      (22) 

mPL  is the pathloss of the m th
 link. mK   is the ISI length for m th

 link ( 1, 2, 1, 2,m D D R R RD ). 

For example, in path between relay and receiver, we can write the following expression, 
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B. Outage Probability 

In this section, we approximate the outer bound on the capacity region of the UWB multiple access 

relay channel (13) with using the law of large numbers and Jensen's inequality. Then, we obtain the 

outage probability. We can write an outer bound for the outage probability of the multiple access relay 

channel as follows, 
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 Therefore, 
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where 1,oR  and 2,oR  are individual target rates, ,sum oR  is sum target , ,

max

ij outageP  denotes probability of 

,

max

ij i oR R  ([5],[13],[14]). 

1) Outage probability of 11

maxR :  

We can write an outer bound on  11

maxR  as follows, 
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 `a' follows from  Jensen's inequality. 

 `b' follows from  the law of large numbers. Since K  is a very large number, we can 

approximate the term 
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So, we have: 
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where 1D  and RD  are random variables with  gamma distribution and parameters 1 1( , )D Dm   and 

( , )RD RDm   which are defined with following parameters (15,16): 

 
2

( 1) 1
1 , 1 ( 1) 2

, ,

, ,

,
( )

D D
D i l D D

i l i l

i l i l

m

m


 





 (27) 

 
2

( )

, ( ) 2
, ,

, ,

,
( )

RD RD
RD i l RD RD

i l i l

i l i l

m

m


 





 (28) 

So, we can write: 
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where (.)  is the gamma function and (.,.)  is the lower incomplete gamma function.  

 Using the Lemma 1 and choosing 1 1   and 2 1RD  ,  we can write the following relations: 
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2) Outage probability of 12

maxR : 

Like section (IV-B1), we can write an outer bound on  12

maxR   as follows, 
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where 1
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 . Also, 1D  and 1 1D R  are random variables with gamma distribution and 

parameters 1 1( , )D Dm   and 1 1( , )R Rm   which 1 1( , )R Rm   is defined with following parameters 

(15,16): 
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So, we can write 
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 Therefore, 
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As the same way, 
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3) Outage probability of ,1

max

sumR : 

We can write an outer bound on  ,1
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sumR  as follows,              
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where, 
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. For the lack of space, proof is omitted. 

Similarly, we can write an outer bound on  ,2
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sumR  as follows, 
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Consequently, 
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Outage probability bound: 

The following is an approximated  bound for outage probability of the UWB multiple access relay 

channel: 
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C. Diversity Gain Analysis and Comparison 

The 11,

max

outage  gives us a diversity gain of 11m  and 12,

max

outage  gives us a diversity gain of 12.m  and so 

on. Therefore, we can write the following bound for diversity gain, 
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For comparison, we assume that the number of clusters and the number of rays in each cluster and in 

all paths are equal. Also, all of paths are Nakagami variables with similar parameters   and m  and 

with equal path loss. Noise power spectral density at the  destination and the relay are assumed equal. 

It is assumed that the sources and relay power are equal ( 1 2 RP P P  ). We can compute 11m , 12m , 

 as following, 

 1 1,D DK LM m Km LMm        

then 

 11 1 1RD RDK K LM LM         

 
by considering the above assumptions, 

 11 2 2K LM      
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Fig. 3.  Simulation model. 

 

and, 

 

 11 2 2m Km LMm   

as the same way 

 12 21 22 2 2m m m Km LMm     

and, 

 ,1 ,23 3 , 4 4sum summ Km LMm m Km LMm     

Consequently, 
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By removing relay from (13), we obtain the diversity gain bound for UWB multiple access channels 

as follows, 

 

1

( ) 1

2
MACUWBDiversity Gain LMm

 
 

  
 
 

 (47) 

By comparing  (46) with (47), we  see an improvement in diversity gain when we add a relay to 

multiple access channel. 

 

V. NUMERICAL RESULTS 

In this section, we illustrate some numerical results for the derived bounds and regions. We examine 

our results in NLOS environment with 8 GHz  bandwidth and center frequency of 6 GHz. The 

distance between senders and receiver is fix and about 3 meters but the distance between two senders  
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Fig. 4. Inner and outer bounds for 1R  and 1 2R R  for 0.99z  . 
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Fig. 5. Inner and outer bounds for 1R  and 1 2R R  for 0.50z  . 

 

is 2 meters and the relay is located in distance of d  meters from the both senders  (Fig. 3). The 

transmitted power by the sources and relay nodes are equal to the maximum allowed power for the 

UWM systems, defined by FCC (-41.3dBm/MHz). We assume  noise power spectral density at the  

destination is half of noise power spectral density at the relay ( 0.5D RN N ). In Figs. 4,  5 and 6 the 

inner and outer bounds for 1R  and 1 2R R  for three different values of correlation coefficients (0.99,  

0.50 and 0.00) are shown. We can say that our inner bound is independent of noise correlation 

coefficients,  because of using decode and forward scheme. Based on the Fig. 7, we  see that when the  



Outage Probability Bound and Diversity Gain for Ultra-Wideband Multiple... 41 

 

   

 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Noise Correlation Coefficient

d
R

m
a
x

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
93.5

94

94.5

95

95.5

96

Sources to Relay distance (meter)

R
a

te
 (

b
it

s
/t

ra
n

s
m

is
s

io
n

)

 

 

R1(Inner Bound)

R1(Outer bound)

R1+R2(Inner Bound)

R1+R2(Outer Bound)

 

Fig. 6. Inner and outer bounds for 1R  and 1 2R R  for 0z  . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Distance between relay and sources for maximum individual rates of outer bound. 

 

noise correlation coefficient increases, the distance between relay and sources for maximum 

individual rates of outer bound is increased.  Therefore, it is better that the relay is located near the 

sources when the noise correlation coefficient is low. Therefore, noise correlation coefficients plays 

important role in determining relay position and data rate.  And also, as intuitively expected, the noise 

correlation coefficient appears in terms having ( , )D RY Y . In achievable rate terms there is not  

( , )D RY Y  and hence we do not see the noise correlation coefficient. Physically speaking, we observe 

that  achievable rate is  not a function of the correlation coefficient, because the relay node performs 

full-decoding of the sources messages and send newly encoded messages. 
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VI. CONCLUSION 

We have obtained  outer and inner bounds for the IEEE 802.15.3a UWB multiple access relay channel 

with correlated noises at the relay and receiver. We have also obtained the diversity gain bound and 

shown that there is an improvement in diversity gain compared with  UWB multiple access channels. 

Our model subsumes UWB relay channel with and without correlated noises. At the last, we evaluated 

some results numerically. 
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