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Abstract—In this paper the secrecy problem in the cognitive state-

dependent interference channel is considered. In this scenario we have a 

primary and a cognitive transmitter-receiver pairs. The cognitive 

transmitter has the message of the primary sender as side information. 

In addition, the state of the channel is known at the cognitive encoder. 

Hence, the cognitive encoder uses this side information to cooperate 

with the primary transmitter. The message of the cognitive encoder 

must be secret at the primary receiver, i.e., the primary receiver act as 

an eavesdropper for the cognitive transmitter. An achievable rate region 

and an outer bound on the rate region in this channel are derived. The 

results are extended to the previous works as special cases. 
  

Index Terms—Cognitive radio, secrecy capacity, side information, perfect secrecy. 

 

I. INTRODUCTION 

Contemporaneous of arising the interference channels as a basic model in studying the 

communication literature, using the channel state in communication channel models was introduced 

by Shannon in his landmark paper [1]. He assumed the channel side information at the transmitter 

(CSIT). Gel’fand and Pinsker in their essential work [2] proved that the capacity of the discrete 

memoryless channel with non-causal CSIT is given by  where the 

maximum is taken over all input distributions  with a finite alphabet auxiliary random 

variable . 

Costa in his famous paper, named writing on dirty paper, extended Gel’fand and Pinsker's (GP) 

coding  to the Gaussian channel and showed that for this channel, interference does not affect the 

main channel’s capacity [3]. He chose  and maximized the Gel’fand and Pinsker's 

capacity over all quantities of  and proved that for the optimum value of  and for independent 

Gaussian  and , the capacity of the channel reduces to the primary main channel without side 

information. Mitrpant et al., extended the dirty paper channel to the basic Gaussian wiretap channel 

with side information [4]. They introduced an achievable rate region and an upper bound on the rate 

region for this channel. Chen and Vinck investigated Wyner's wiretap channel with side information 

[5]. They based their results on the previous work on the wiretap channel and the discrete memoryless 
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channel with state information and gave an achievable rate region which is established on the 

combination of Gel’fand–Pinsker coding and the random coding used in wiretap channels [6]. They 

extended their results to the Gaussian wiretap channel with side information using the dirty paper 

coding technique. They proved that known channel state at the transmitter can increase the secure rate 

region in the state-dependent wiretap channel. 

The effect of the channel state on the achievable rate in cognitive interference channel was 

considered in [7]. The coding and the rate region in this paper was based on [8] for the MAC. The 

achievable rate and the outer bound for the cognitive interference channel in which the cognitive 

transmitter knows the channel state non-causally was derived in [7] and it is proved that this side 

information make the cognitive encoder to increase the pair rate in a cooperative manner. 

The secrecy rate of the cognitive interference channel was studied in [9]. In this work, the cognitive 

encoder has the primary sender’s message and an individual message. At the receivers, the primary 

receiver acts as a wiretapper for the cognitive one and the aim is to decrease the leakage information 

to the unintended receiver, i.e., primary receiver. The random coding used and the achievable 

equivocation rate region was derived. The authors in [10] studied the cognitive interference channel 

with two confidential messages. In this scenario, each receiver acts as an eavesdropper for the other 

one. So, the message of the primary and the secondary transmitter must be secure at the unintended 

destinations. In this model the cognitive encoder, which knows the message of the primary encoder 

non-causally, acts in a manner that both the messages would be secure at the unintended receivers.  

In this paper we consider the cognitive state-dependent interference channel with a confidential 

message, in which the channel state models the interfering signals. As we can see in Fig. 1, we have 

two transmitter-receiver pairs. The secondary transmitter, i.e., the cognitive transmitter knows the 

message of the primary transmitter and the state of the channel as the side information. Each receiver, 

decodes its individual message. The message of the cognitive transmitter must be confidential in the 

unintended receiver. On the other hand, the primary receiver acts as an eavesdropper for the cognitive 

encoder. Not considering the secrecy issue, our model reduces to the model of [7] in which the 

cognitive state-dependent interference channel was considered. Furthermore, the cognitive channel 

without channel state is like the one considered in [9]. We employ the coding scheme used in [5] and 

establish the equivocation rate region for the cognitive interference channel, which characterizes the 

tradeoff between the achievable rates and the achievable secrecy at the primary receiver, i.e., the 

eavesdropper. Therefore, we derive the achievable rate and the outer bound for this channel. This 

paper is organized as follows. In Section II, the channel model is introduced. In Section III, the main 

results are presented.  The paper is concluded in Section V. The proofs for the theorems are presented 

in the Appendices. 



56  Journal of Communication Engineering, Vol. 2, No. 1, Winter 2013 

 

 

Fig. 1. The cognitive state-dependent interference channel with a confidential message. 

II. CHANNEL MODEL 

Consider a memoryless stationary state-dependent interference channel with finite input alphabets 

 and , finite output alphabets  and , the state alphabet  with distribution  and a 

conditional probability distribution . In the sequel, we use  and  to indicate the 

vectors  and , respectively. The -th encoder wishes to transmit the message 

 uniformly distributed on the set , where . The message  is known in 

both encoders but the message  is just known at the encoder 2. This encoder assumed as the 

cognitive transmitter. 

The conditional distribution of the channel output n-sequences  given the inputs and the 

states, -sequences  take the product form 

 

(1) 

The encoders for the channel are defined by the mappings 

and the decoders for the channel are defined by the mappings 

We denote the error probability  in which 

Definition 1: We define  for .  

Definition 2: The rate-triple  is achievable if for any  there exists a 

 code such that . 

The secrecy level of the secondary encoder's message at the primary receiver is measured by 

normalized equivocation 

  

 (2) 

  

 (3) 

 

 

(4) 



 

   

 

On The Secrecy of the Cognitive Interference Channel with Channel State 57                                                  

 

(5) 

and 

 
(6) 

for . 

Definition 3: The capacity region is the closure of the set of all achievable rate-triples. 

III. MAIN RESULTS: INNER AND OUTER BOUNDS ON THE RATE REGION 

As we explained in the previous section, in our scenario the cognitive encoder has non-causal 

access to the message of the primary sender. In addition, the state of the channel is assumed to be 

known at the cognitive transmitter. The following result gives the achievable region for the finite 

alphabet cognitive interference channel with CSIT. 

Theorem 1: (achievable rate) The closure of the convex hull of the set of rate-triples  

satisfying 

 (7) 

 (8) 

 (9) 

for input distribution factors as 

 (10) 

is achievable for the finite alphabet cognitive interference channel with CSIT. 

Proof: The details on the proof and the computation of the equivocation rate are relegated to the 

Appendix A. As a hint, the cognitive encoder uses the mutual information between its message  and 

the state of the channel and the output signal in the receiver 1, to randomize its message. Using the 

random coding, message of encoder 2 remains confidential at the receiver 1 and by Gelfand and 

Pinsker coding scheme the effect of the channel state is canceled. In Fig. 2, our derived equivocation 

rate region is compared with the achievable rate region and the outer bound on the rate region 

proposed in [7]. 

Corollary 1: We note that this result without secrecy issue reduces to the result of [6, Th. 1] for the 

cognitive state-dependent interference channel. 

Corollary 2: The equivocation-rates (7)-(9) without channel state, i.e., in the case that , is 

reduced to the result derived in (6) of [9]. 

Corollary 3: In the special case, when we have , the achievable rate 

region (7)-(9) reduces to the achievable rate region of the state-dependent cognitive interference 

channel in [7]. In this case, the coding scheme used in [7], achieves the secure rate for the cognitive 

transmitter. 
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Fig. 2. Our derived equivocation rate region compared with the previous results derived in [7]. 

 

Corollary 4: In a special case, when , the achievable rate region 

(7)-(9) reduces to the following remark. 

Remark 1: The closure of the convex hull of the set of rate-pairs  satisfying 

 (11) 

 (12) 

for input distribution factors as (10), is an achievable secure rate region for the finite alphabet 

cognitive interference channel with CSIT in special case, when . 

Theorem 2: (outer bound) The set of achievable rate-triples of the cognitive interference channel 

with CSIT is contained in the closure of the set rate-triple  that satisfy 

 (13) 

 (14) 

 

(15) 

for input distribution factors as (10). 

Proof: We relegate the details on the proof of the above theorem to the Appendix B, but we should 

note that the equations (13) and (14) are equal to the result in [7, Theorem 2], i.e., the outer bound in 

Theorem 2 is reduced to the result in [7] without secrecy issue. The equation (15) is derived with the 

technique presented in [10]. 

IV. CONCLUSIONS 

In this paper the secrecy problem of the state-dependent cognitive interference channel with non-

causally CSIT was considered. The achievable rate region and the outer bound on the rate region were 

derived. The results are compared with the previous works as special cases.  

APPENDIX A: PROOF OF THE THEOREM 1 

In this Appendix, we present the proof of the Theorem 1. First of all, we introduce the coding 

scheme. In this section, we denote the messages by and 
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, respectively. The notation  is used to indicate the strong 

typical set based on the distribution . 

A. Code Generation:  

The code generation scheme is as following 

1- Generate  codeword ,  , each uniformly drawn from the set . 

2- For each , generate  sequences ,  , each uniformly drawn from the 

set . 

3- For using the random coding scheme  to keep the cognitive message be secret at the 

unintended receiver, distribute the  sequences randomly to  bin such that each bin 

contains  sequences and 

. Now, we index each bin by . 

Next, partition  sequences in every bin into 

 subbin each subbin contains  

sequences. Index each subbin by  and let  

be the random variable to represent the index of the subbin. This step of code generation is 

illustrated in Fig 3. 

B. Encoding: 

Now, we define ,  where  and  were defined before. So, we let 

 where . We define mapping  to be partitioning  into  subsets with 

nearly equal size, where “nearly equal size” means 

 (16) 

Encoder 1 chooses  according to its message index . Encoder 2, tries to find the  such that 

. This index, contains the individual message of the cognitive encoder. Then, it finds , 

 and  such that . So, it lets  with  randomly, uniformly 

from the set . Encoder 1 and 2 send  and  according to 

 and , 

respectively. 

C. Decoding: 

Receiver 1 tries to find  such that . If no such  is found, the error is declared. 

Receiver 1, if given the indices , declares that the index of  is , if it is a unique index 

such that . If no such  is found, an error is declared. Receiver 2, tries to find 

the  such that . If there are not such indices, the error is indicated. 
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Fig. 3. Code generation scheme for the cognitive interference channel with CSIT. 

D. Error Computation: 

We can compute the average error by the standard techniques as in [11], where the average is taken 

over the random codebook ensembles. So, we can show that the average error is less than  for 

sufficiently large codeword length . We should use error computation technique to prove the 

achievability of the rates (7) and (8). Since these rates are same to the rate region in [7], the error 

computation can be taken like there. So, the binning index scheme can be use and the achievability of 

the equations (7) and (8) are proved. In the sequel we use the equivocation computation to prove the 

third equation in the rate region of Theorem 1 , i.e., equation (9). 

E. Equivocation Computation: 

In this section, we compute the equivocation of the  at the receiver 1, in following: 
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(17) 

where 

 follows from the fact that we have ; 

 follows from the fact that , 

because that  tends to zero using the Fanoe’s inequality when ; 

 follows from the fact that for the , we have ,  

and ; 

 is because of the fact that . 

Now, for the last term in (17), we define 

 

(18) 

Then 

 

 

(19) 

Therefore, by Fano's inequality, we obtain 

 
(20) 

where  is small for sufficiently large . 

By combining (6), (17) and (20), the achievable rate region in Theorem 2 is derived.   

APPENDIX B: PROOF OF THE THEOREM 2 

Proof: As we mentioned later, the equations (13) and (14) in Theorem 2 are similar to the results derived by 

[7]. In this section we prove (15) in Theorem 2. First we define the following notations 

 (21) 

 (22) 

Now, we consider the equivocation rate bound applying the techniques in [12] 

 
(23) 

 

(24) 
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where  and  are because of Fano's inequality and  is negligible for enough large . Therefore, we have 

 
(25) 

 

(26) 

and so we have 

 
(27) 

 
(28) 

Let us define random variable , independent of  

 (29) 

Substituting these variables we obtain (20).         
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