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Abstract— In this paper, we derive a capacity inner bound for a 

synchronous Gaussian Z channel with intersymbol interference (ISI) 

under input power constraints. This is done by converting the original 

channel model into an n-block memoryless circular Gaussian Z channel 

(n-CGZC) and successively decomposing the n-block memoryless 

channel into a series of independent parallel channels in the frequency 

domain using the discrete Fourier transform (DFT). The capacity inner 

bounds for these parallel channels can be determined easily. Since we 

assume that our channel is a synchronous channel, the capacity inner 

bound of the Gaussian Z channel with ISI is the same as the capacity 

inner bound of the n-CGZC in the limit of infinite block length. 

Moreover, some numerical results showing the loss in rate caused by ISI 

are given.  
  

Index Terms— Capacity Region, Gaussian Channels, Intersymbol Interference 

(ISI), Z Channel. 

 

I. INTRODUCTION 

The two-user Z channel (ZC), introduced by Viswanath et al. [1], has two transmitters and two 

receivers as shown in Fig. 1 in which the transmitter 1 wishes to transmit information to only receiver 

1 whereas the transmitter 2 wants to transmit information to both receivers. In the ZC, the first 

receiver sees a two-user multiple-access channel (MAC) and the second transmitter sees a broadcast 

channel (BC). This means that in the ZC we have two important channels MAC and BC concurrently. 

Viswanath et al. [1] by considering the Gaussian version of the ZC derived a capacity inner bound 

which is a combination of BC and MAC capacity regions. Capacity bounds for the Gaussian ZC with 

a small crossover link gain have been obtained by Liu and Ulukus [2]. Chong et al. [3] studied both 

the discrete memoryless ZC and the Gaussian ZC. Specifically, they obtained capacity inner and outer 

bounds for the Gaussian ZC with strong crossover link gain as well as the capacity region for 

moderately strong crossover link gain. In spite of all the efforts made to date, the capacity region of 

the general ZC is still an open problem. However, the best known capacity inner bound for the general 

ZC has been provided by Do et al. [4]. 

In digital communication systems, intersymbol interference (ISI) is known as one of the major 
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factors of the system performance degradation in which one symbol interferes with the following or 

preceding transmitted symbols and therefore, makes the communication less reliable. Multipath 

fading and signal transmission through a bandlimited channel are two major causes of the ISI. Since 

the channels with ISI are channels with memory, determining their capacities are not so easy. Hirt and 

Massey [5] first introduced the main idea of determining the capacity of the ISI channels and thereby 

derived the capacity of a single-user Gaussian channel with ISI. Their idea is to convert the ISI 

channel to an equivalent memoryless one using n-block memoryless circular channel model and then 

apply the discrete Fourier transform (DFT) to decompose the n-block channels into independent 

channels whose capacities can be found easily. In the multi-user setting, the capacity region of a 

synchronous MAC with ISI [6], the capacity region of a BC with ISI [7], and lower and upper bounds 

on the capacity of a relay channel with ISI [8] have been obtained using the same methodology in [5]. 

Moreover, a more general result has been proved in [7] which states that the capacity regions of any 

synchronous multi-terminal channel and its n-circular approximation are the same when n grows to 

infinity. More recently, the capacity region of the Gaussian compound MAC with common message 

and ISI has been determined [9]. 

In this paper we derive a capacity inner bound for the synchronous Gaussian ZC (GZC) with ISI 

using the same approach that has been used to obtain the capacity of the single-user and synchronous 

multi-user channels with ISI [5]–[9]. This is done by converting the original channel model into an n-

block memoryless circular Gaussian Z channel (n-CGZC) and successively decomposing the n-block 

memoryless channel into a series of independent parallel channels in the frequency domain using the 

DFT. The capacity inner bounds for these parallel channels can be determined easily by evaluating the 

classical capacity region by Chang, Motani and Garg [3]. Since we assume that our channel is a 

synchronous channel, the capacity inner bound of the GZC with ISI is the same as the capacity inner 

bound of the n-CGZC in the limit of infinite block length [5]–[9]. Moreover, for showing the loss in 

rate caused by ISI, we give two examples representing different levels of ISI and thereby we show 

that the rate region decreases as ISI increases. The rest of the paper is organized as follows. In Section 

II, we introduce the linear GZC with ISI and related n-block circular GZC. The main results are 

presented in Section III. Some numerical results showing the loss in rate caused by ISI are given in 

Section IV. Finally, a conclusion is provided in Section V. 

II. DEFINITIONS AND CHANNEL MODEL 

In this section, we introduce the linear GZC with ISI and related n-block circular GZC building on 

the notations and formulations similar to [6]-[9]. Throughout the paper, sequence (         ) is 

denoted by { }, subsequence (       ) by {  }   
  and vector (       ) by   . The absolute value 

of the determinant of matrix   is denoted by | | and the transpose and the conjugate transpose of ( ) 

are denoted by ( )  and ( ) , respectively. 〈 〉  equals   modulo   except when   is zero or an integer 



Journal of Communication Engineering, Vol.2, No.2, Spring 2013                                                      133  
 

 

multiple of  , in which case 〈 〉   . 

Definition 1: A two-user discrete memoryless ZC (shown in Fig. 1) consists of two input alphabets 

  ,   , two output alphabets   ,   , and a transition probability  (     |     ) with two 

conditional marginal distributions  (  |     ) and  (  |  ). The channel is memoryless in the sense 

that  

 (  
    

 |  
    

 )  ∏ (    |         ) (    |    )

 

   

 
 

In this channel, transmitter 1 wants to send message         {         } to the first 

receiver while transmitter 2 wants to send message         {         } to the first receiver 

and message         {         } to the second receiver. The messages are assumed to be 

uniformly distributed on their respective sets.  

A (                     ) code for the discrete memoryless ZC consists of three message sets 

   ,    ,    , two encoding functions   ( )   ( ),  

          
                

  

and two decoding functions   ( )   ( ),  

      
                

      

such that   
( )

  , where   
( )

 denotes the average error probability and defined as 

  
( )

  (  (  
 )  (       )         (  

 )     )  

A rate triple (           ) is said to be achievable for the ZC if there exists a sequence of 

(                     ) codes. The capacity region of the ZC is the closure of all achievable rate 

triples (           ).  

In [3] a capacity inner bound has been presented for the two-user discrete memoryless ZC by 

making use of rate splitting and superposition coding. The outline of the coding scheme used in [3] is 

as follows (Fig. 1). First, using rate splitting technique, the second transmitter splits     into two 

independent parts as     (         ) where      and      have rates      and     , 

respectively, such that              . The subscripts “c” and “p” stand for “common” and 

“private”, respectively. Similarly, the second transmitter splits     into two independent parts as 

    (         ) where      and      have rates      and     , respectively, such that 

             . The common messages      and     , transmitted by the second transmitter, 

are decodable by both receivers and therefore, can be combined to produce a common message as 

    (         ) with rate              . The private message     ,      , represents the 

information that only receiver   can decode. Then, three auxiliary random variables   ,    and    are 

used to encode sub-messages    ,      and     , respectively, such that    and    are 

superimposed onto the   . 
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Fig. 1 The two-user Z channel. 

 

 

Fig. 2 The discrete-time linear Gaussian ZC with ISI. 

 

Figure 2 shows a discrete-time linear Gaussian ZC with ISI studied in this paper, where channel 

impulse responses {     }   

 
, {     }   

 
 and {     }   

 
 are three different sets of ISI coefficients with 

common memory length  , the noise sequences {    } and {    } are stationary Gaussian noise 

processes with mean zero and autocorrelation functions       and      , respectively. We suppose 

that these autocorrelation functions have a common finite support     , i.e.,               for 

| |      . Here, only the case        is considered. For the case       , we can make the 

channel impulse responses equal by padding the appropriate number of zeros. Also, {    } and {    } 

are the input sequences sent by users 1 and 2, respectively, and the output sequences {    } and {    } 

(      ) are 

     ∑(                       )

 

   

                                 (1)  

     ∑           

 

   

                      
 

(2) 

where   denotes the linear convolution. This channel is a channel with ISI because the outputs at 

any time instance depend on the inputs of that time as well as previous inputs. This channel is also 

called the linear Gaussian ZC (LGZC) with finite memory   because of linear relation between the 

inputs and outputs.  
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The transfer functions of the channel links are  

       ( )  ∑      
    

 

   

            {        } 
 

(3) 

The noise power spectral densities of the channel are 

     ( )  ∑       
    

   

   (   )

           {   } 
 

(4) 

We assume the following input power constraints: 

 

 
∑  [    

 ]

 

   

              {   }  
 

(5) 

To obtain an inner bound to the capacity region of the LGZC with ISI, we convert the original 

channel model into an equivalent n-block memoryless circular Gaussian ZC (n-CGZC). If for any 

integer   the following constraint holds then the ZC is an n-block memoryless ZC.  

 (  
     

  |  
     

  )    

∏ (   (   )   
  |   (   )   

      (   )   
  ) (   (   )   

  |   (   )   
  )

 

   

 
 

(6) 

This means that in the n-block memoryless ZC the outputs over any n-block are independent of 

inputs and noise samples of other n-blocks. Hence, in the n-CGZC and for each n-block, the output 

vector { ̃   }   

 
 at receiver 1 and { ̃   }   

 
 at receiver 2 are generated as   

             ̃    ∑( ̃       〈   〉   ̃       〈   〉 )

   

   

  ̃    
 

                      ̃           ̃           ̃        (7) 

             ̃    ∑  ̃       〈   〉 

   

   

  ̃    
 

                      ̃           ̃        (8) 

where   denotes the circular convolution,      , {    }   

 
 and {    }   

 
 are input vectors of 

the n-block, and { ̃    }
   

   
 (                         ) for    {        }, i.e., { ̃    }

   

   
 is 

an extended version of {     }
   

 
 which is extended with (     ) zeros. Note that in (7) and (8), 

the input vectors are circular and channel impulse responses are fixed vectors. Similar results can be 

obtained by considering the circular channel impulse response vectors and fixed input vectors. The 

noise process over each n-block in the n-CGZC is defined as { ̃   }
   

 
   {   }, which is a  
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Fig. 3 The kth-component channel. 

 

stationary Gaussian process with zero mean and autocorrelation function  ̃    . It is worth noting 

that   ̃     is a periodic repetition of the autocorrelation function of      (     ) for noise samples 

within an n-block. Therefore,  ̃    and     ,   {   }, have the same mean and variance. Moreover, 

the same input power constraints as (5) are assumed for n-CGZC.  

Since the DFT is an invertible operation, it does not affect the capacity region. Therefore, we can 

use the DFT to decompose the n-CGZC with ISI into a series of n two-user parallel, memoryless and 

independent scalar Gaussian Z channels in the frequency domain which the capacity inner bound of 

these parallel channels can be determined easily. Therefore, by applying the DFT to (7) and (8) we 

have 

 ̃     ̃          ̃          ̃    (9) 

 ̃     ̃          ̃                          (10) 

where for      ,   {   } and    {        },     ,  ̃    ,  ̃   , and  ̃    are the DFTs of     , 

 ̃    ,  ̃   , and  ̃   , respectively. Hence, the n-CGZC is equivalent to a set of n parallel ZCs with the 

kth-component channel as shown in Fig. 3.   

III. MAIN RESULT: CAPACITY INNER BOUND FOR THE LINEAR GAUSSIAN ZC WITH ISI 

In this part, we derive a capacity inner bound for the n-CGZC which is the same as the capacity 

inner bound of the LGZC with ISI in the limit of infinite block length. 

Let   and    denote the capacity inner bound of the LGZC with finite memory and the n-CGZC, 

respectively. As we consider a synchronous Z channel, we can apply the results in [7] to obtain the 

capacity inner bound of the LGZC with ISI which is the same as the capacity inner bound of the n-

CGZC in the limit as n goes to infinity. Applying the results in [5]-[7] we can write: 

     
   

   (11) 

where      (     ) is the closure of the convex hull of all nonnegative rate triplets 
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(           ) satifying  

{
 
 

 
 

          
          
          

                         

           (   ) 

               (   )            

 

(12) 

where 

  
 

 
 (  

    
 |  

    
 )   

 

 
 (  

    
    

 |  
 ) 

  
 

 
 (  

    
    

 )   
 

 
 (  

    
    

    
 ) 

  
 

 
{ (  

    
    

 |  
 )   (  

    
 |  

 )} 

  
 

 
{ (  

    
 |  

    
 )   (  

    
    

 )} 

  
 

 
{ (  

    
    

 |  
 )   (  

    
    

 )} 

  
 

 
{ (  

    
    

    
 )   (  

    
 |  

 )} 

The notation   (     ) refers to rate region obtained by all input vectors   
  and   

  satisfying the 

power constraints (5). Note that since the n-CGZC defined by (7) and (8) is an n-block memoryless 

ZC, its capacity inner bound (i.e., (12)) follows directly from the known inner bound on the two-user 

general ZC obtained in [3] provided that we replace (                    ) by 

(  
    

    
    

    
    

    
 ).  

Theorem 1: A capacity inner bound for the linear Gaussian Z channel with ISI is given by the set 

    (     ) which is the closure of the convex hull of all rate triplets (           ) satifying  

{
  
 

  
 

           

           

           

                          

           (     ) 

               (     )            

 

(13) 

where 

   
 

  
∫    (

  ( )| ̃  ( )|   ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( )

 ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( )
)   

 

  
  

   
 

  
∫    (

  ( )| ̃  ( )|   ̃ ( )

 ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( )
)   

 

  
  

   
 

  
∫    (

  ( )| ̃  ( )|   ̃ ( )

 ̅( ) ( )  ( )| ̃  ( )|   ̃ ( )
)   

 

  
  

   
 

  
∫    (

  ( )| ̃  ( )|    ( )| ̃  ( )|   ̃ ( )

 ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( )
)  
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∫    (

(  ( )| ̃  ( )|   ̃ ( ))( ̅( )  ( )| ̃  ( )|   ̃ ( ))

( ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( ))( ̅( ) ( )  ( )| ̃  ( )|   ̃ ( ))
)  

 

  
  

   
 

  
∫    (

( ̅( )  ( )| ̃  ( )|   ̃ ( ))(  ( )| ̃  ( )|   ̃ ( ))

( ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( ))( ̅( ) ( )  ( )| ̃  ( )|   ̃ ( ))
)

 

  
    

   
 

  
∫    (

(  ( )| ̃  ( )|   ̅( )  ( )| ̃  ( )|   ̃ ( ))(  ( )| ̃  ( )|   ̃ ( ))

( ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( ))( ̅( ) ( )  ( )| ̃  ( )|   ̃ ( ))
)  

 

  
  

   
 

  
∫    (

(  ( )| ̃  ( )|    ( )| ̃  ( )|   ̃ ( ))( ̅( )  ( )| ̃  ( )|   ̃ ( ))

( ̅( ) ̅( )  ( )| ̃  ( )|   ̃ ( ))( ̅( ) ( )  ( )| ̃  ( )|   ̃ ( ))
)

 

  
    

for any    ( )  ( )   , and 
 

  
∫   ( )  

 

  
    for   {   }.  

Proof: Refer to Appendix. 

As we know the first transmitter sends sequence   
  with rate    where       , and the second 

transmitter sends sequence   
  with rate    where           . Therefore, we can describe the 

rate region (13) in terms of the rate pair (     ) using the Fourier-Motzkin elimination technique as 

follows.  

Theorem 2: A capacity inner bound for the linear Gaussian Z channel with ISI is given by the 

closure of the convex hull of all rate pairs (     ) satifying  

{

                      

      (     )

         (     )         
 

(14) 

where the bound constants   ,   ,   ,    and    are the same as in Theorem 1. 

Proof: Theorem 2 is proved in the same manner as in [10]. In (13) and                set 

       and           . Then by eliminating     and    , step by step, and removing 

redundant inequalities, we obtain the non-redundant set of inequalities in Theorem 2. 

Now, we study some special cases of the proposed inner bound for the linear Gaussian Z channel 

with ISI. 

Remark 1: By setting       (or equivalently    ) in Theorem 1 and removing redundant 

constraints, the presented capacity inner bound in Theorem 1 reduces to the capacity inner bound for 

the linear Gaussian Z-interference channel with ISI.   

Remark 2: By setting         (or equivalently    ) in Theorem 1 and removing redundant 

constraints, the inner bound in Theorem 1 is reduced to the inner bound to the capacity region of the 

linear Gaussian MAC with ISI [6].    

Remark 3: By setting       and      (or equivalently     ) in Theorem 1 and removing 

redundant constraints, the inner bound in Theorem 1 reduces to a capacity inner bound for the linear 

Gaussian BC with ISI.    

Remark 4: By setting      (or equivalently    ) in Theorem 1 and eliminating redundant 

relations, we can obtain a capacity inner bound for the linear Gaussian Z-interference channel with ISI  
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Fig. 4 Capacity inner bounds of the channels in examples 1 and 2 as well as of the channel without ISI. 

 

and with degraded message sets using Theorem 1. 

IV. SIMULATION RESULTS 

Here, to show the loss in rate caused by ISI, we give two examples representing different levels of 

ISI as follows.  

 )       [         ]      [         ]      [         ]  

 )       [         ]      [         ]      [         ]  

In these examples, we assume that the white Gaussian noises have unit variance, the transmitters 

have power constraints     ,     ,  and the impulse responses of all channels are normalized to 

have unit energy, i.e., 

 )     ( )  
         

√    
       ( )  

         

√    
       ( )  

         

√    
  

 )     ( )  
         

√    
       ( )  

         

√    
       ( )  

         

√    
  

In Example 1, ISI is mild while in Example 2, ISI is stronger. Capacity inner bounds of the 

channels in Examples 1 and 2 as well as the capacity inner bound of the channel without ISI are 

shown in Fig. 4. As shown in Fig. 4 the rate region decreases as ISI increases. Note that since the 

comparison of these rate regions in a 3-dimensional plot is difficult to illustrate, we have used 

Theorem 2 to have a better comparison of the rate regions in a 2-dimensional plot. 

V. CONCLUSION 

In this paper, an inner bound on the capacity region of a finite-memory Z channel with intersymbol 

interference and additive Gaussian noise was obtained. This capacity inner bound is equal to the 

capacity inner bound of an n-block memoryless circular Gaussian Z channel as n grows to infinity. 
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The n-block memoryless circular channel for any n can be decomposed using the DFT into a set of 

parallel independent Z channels in the frequency domain, for which the inner bound can be obtained 

easily. Numerical examples were provided to show the loss in the rate region caused by ISI. 

APPENDIX: PROOF OF THEOREM 1 

First note that rate region (12) is obtained by considering the joint distribution, 

 (  
    

    
    

    
    

    
 )   (  

 ) (  
 ) (  

 |  
 ) (  

 |  
 ) 

  (  
 |  

    
    

 ) (  
 |  

    
 ) (  

 |  
 ) 

Let  ,   ,   , and    be complex Gaussian random variables distributed according to   (   ). 

We now define the following mappings of random variables with respect to the above joint 

distribution. 

      √      

      √      √ ̅      √ ̅ ̅       

      √        

      √      √ ̅        

      √      √ ̅ ̅       

where          ,  ̅      and  ̅     . By using these mappings and considering the 

channel described by (9) and (10), we obtain 

 ̃     ̃    √     ̃    (√      √ ̅      √ ̅ ̅    )   ̃     (15) 

 ̃     ̃    (√      √ ̅      √ ̅ ̅    )   ̃     (16) 

Considering (15)-(16) and by the invertibility of the DFT, the mutual information terms in (12) can 

be evaluated as follows. As we know for any real sequence   , its DFT    has the property that 

       
 ,      , where    denotes the complex conjugate of  . Thus, without losing any 

information, we can reconstruct the entire sequence    using the DFT terms {       }, where 

  ⌊
 

 
⌋. Therefore, we have: 

 (  
    

    
    

 )   (  
    

    
   ̃ 

 )  

   ∑  (                ̃   )
 
      

   ∑ { ( ̃   )   ( ̃   |              )}
 
      

   ∑
 

 
 
      (

|   ( ̃   )|

|   ( ̃    (√ ̅ ̅    )  ̃   )|
)  

 

   ∑
 

 
 
      (

  (  )| ̃  (  )|    (  )| ̃  (  )|   ̃ (  )

 ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  )
)  

Similarly, we can evaluate other terms in (13). So,   (     ) can be expressed as the closure of the 

convex hull of all rate triplets (           ) satisfying,  
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{
  
 

  
 

            

            

            

                           

           (       ) 

               (       )            

 

(17) 

Where, 

    ∑
 

  
 
      (

  (  )| ̃  (  )|   ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  )

 ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  )
)  

    ∑
 

  
 
      (

  (  )| ̃  (  )|   ̃ (  )

 ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  )
)  

    ∑
 

  
 
      (

  (  )| ̃  (  )|   ̃ (  )

 ̅(  ) (  )  (  )| ̃  (  )|   ̃ (  )
)  

    ∑
 

  
 
      (

  (  )| ̃  (  )|    (  )| ̃  (  )|   ̃ (  )

 ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  )
)  

    ∑
 

  
 
      (

(  (  )| ̃  (  )|   ̃ (  ))( ̅(  )  (  )| ̃  (  )|   ̃ (  ))

( ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  ))( ̅(  ) (  )  (  )| ̃  (  )|   ̃ (  ))
)  

    ∑
 

  
 
      (

( ̅(  )  (  )| ̃  (  )|   ̃ (  ))(  (  )| ̃  (  )|   ̃ (  ))

( ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  ))( ̅(  ) (  )  (  )| ̃  (  )|   ̃ (  ))
)  

    

∑
 

  
 
      (

(  (  )| ̃  (  )|   ̅(  )  (  )| ̃  (  )|   ̃ (  ))(  (  )| ̃  (  )|   ̃ (  ))

( ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  ))( ̅(  ) (  )  (  )| ̃  (  )|   ̃ (  ))
)  

    

∑
 

  
 
      (

(  (  )| ̃  (  )|    (  )| ̃  (  )|   ̃ (  ))( ̅(  )  (  )| ̃  (  )|   ̃ (  ))

( ̅(  ) ̅(  )  (  )| ̃  (  )|   ̃ (  ))( ̅(  ) (  )  (  )| ̃  (  )|   ̃ (  ))
)  

for any    (  )   ,    (  )    and 
 

 
∑   (  ) 

     for   {   }. The  ̃  (  )    

{        } is the kth-component channel for the link   ; the  ̃ (  ) is the noise power spectral 

density of the kth-component channel at receiver  . The   (  ) is the total power allocated to the kth-

component channel by the transmitter  ,  (  ) is the fraction of   (  ) allocated to the transmitter 2 

on channel   for common message,  ̅(  ) (  ) is the fraction of   (  ) allocated to the transmitter 

2 on channel   for the private message of the first receiver and  ̅(  ) ̅(  ) is the fraction of   (  ) 

allocated to the transmitter 2 on channel   for the private message of the second receiver. Finally, we 

obtain the desired result (13) by taking the limit     and using properties of Riemann integration. 
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