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Abstract— From practical and theoretical viewpoints, performance 

analysis of communication systems by using information-theoretic 

results is important. In this paper, based on our previous work on 

Multiple Access Channel (MAC) and Multiple Access Relay Channel 

(MARC), we analyze the impact of a relay on the fundamental wireless 

communications concept, i.e., coverage region of MARC, as a basic 

model for uplink communications between a base station and users with 

the help of a relay. This analysis includes the coverage region for the 

MAC as a special case. Considering rate regions for the Gaussian 

MARC and fading Gaussian MARC, it is proved that in a fixed 

transmission rate, the relay extends coverage region of the MARC. 

Numerical illustrations confirm our theoretical results. 

 

Index Terms— Multiple Access Relay Channel, Coverage region, Fixed desired 

transmission rates, Cellular network. 

 

I. INTRODUCTION 

In the relay channel, first introduced by Van der Meulen [1], the relay can increase transmission 

rate and extend coverage area. Fundamental coding strategies and the capacity for some special 

classes of relay channel and a more general class were studied in [2-6]. 

In some practical models, such as uplink mobile cellular networks, a relay can facilitate 

communication between mobile users and base station. This model known as Multiple-Access Relay 

Channel (MARC) was first introduced by Kramer in [7] and is a combination of Multiple-Access 

Channel (MAC) and the relay channel. MARC with common message was investigated, and its 

achievable regions and  bounds were derived in [9, 10]. Furthermore the results of discrete 

memoryless MARC were extended to Gaussian in [9]. The bounds of MARC with non-causal CSI at 

the relay were derived in [11]. Capacity bounds of MARC in Gaussian and fading environment with 

full-duplex and half-duplex relay constraints via Decode and Forward (DF) and Compress and 

forward (CF) strategies have been derived in [8, 12]. Two special classes of Multiple-Access relay 

Channel which include a non-interfering finite-capacity link from relay to decoder were studied in 

[13]. The inner and outer bounds of the capacity region of multiple-access channel with multiple 
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relays (MACMR) were investigated in [14]. The authors in [15] investigated Ultra-wideband (UWB) 

multiple access relay channel with correlated noises at the relay and the receiver. Bounds for multiple 

access relay channels with receiver-source feedback via two-way relay channel was investigated in 

[16]. 

The existing results in the literature are that they all consider classic perspective of maximizing the 

achievable rates for given locations of the transmitters, relay and the destination.  However, in many 

cases, the problem is to maximize coverage for the fixed desired transmission rates. The authors in 

[17] have studied Gaussian relay channel considering fixed transmission rate and optimal relay 

location to maximize the coverage region. In [18] the authors analyzed coverage region in MIMO 

relay channel over Rayleigh fading environment. The authors in [19] investigated the coverage region 

and energy efficiency for Gaussian relay channel for a specific network geometry. In [20] the 

coverage region for MIMO relay channels in Rayleigh and Rician  fading environments were 

analyzed.  

 

A. Motivation and our work 

Although the coverage region in relay channels have been investigated, it has not been analyzed in 

Multiple Access Relay channel so far. In this paper we analyze the coverage region, as a fundamental 

wireless communications concept, in MARC considering fixed transmission rates and fixed relay 

location, based on our previous work [9]. First, we investigate the coverage area in the Gaussian 

MARC while the destination (Base Station) and the relay are located in the fixed locations at the 

cellular network. Next, we analyze the coverage region in the Rayleigh Fading environment.  

B. Paper organisation  

The rest of the paper is organized as follows: in Section II, we have definitions and background.  In 

Section III, the main theorems are discussed. In section IV, numerical examples are provided for 

Gaussian and Rayleigh models. Finally, the conclusion is drawn in Section V. 

II. DEFINITIONS AND BACKGROUND 

First, in this section we describe the channel model. Next, the coverage definition in MARC is 

introduced. Finally, the achievable rate regions for Gaussian MARC are expressed. 

A. Definitions  

    Channel Model 

Consider multiple access relay channel as shown in Fig. 1. The sources (mobile users) s1 and s2 

transmit the messages X1 and X2  respectively. Let us consider YR as the received signal at the relay  
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Figure 1. A two-user multiple-access relay channel 

 

station. Based on prior received signals, the relay then transmits a message XR  that is intended to 

facilitate the sources transmission to the destination (Base station). Thus, the received signals at the 

base station and the relay can be expressed as: 

 

𝑌𝐷 = ℎ𝑆1,𝐷𝑋1 + ℎ𝑆2,𝐷𝑋2 + ℎ𝑅,𝐷𝑋𝑅 + 𝑍𝐷                             (1) 

𝑌𝑅 = ℎ𝑆1,𝑅𝑋1 + ℎ𝑆2,𝑅𝑋2 + 𝑍𝑅                                              (2) 

 

Where the destination (Base station) and the relay are placed in fixed locations and the sources 

(mobile users) can move in the cellular network. The channel gains are modeled as independent 𝑍𝑅 

and 𝑍𝐷 zero-mean Gaussian noise at the relay and the destination respectively which are independent 

of each other and transmitted signals. Also we suppose 𝛼 as the distance-based path-loss power 

attenuation exponent. ℎ𝑆1,𝐷, ℎ𝑆2,𝐷 is the channel gain between the source1, source2 and the 

destination, ℎ𝑆1,𝑅, ℎ𝑆2,𝑅 is the channel gain between the source1, source2 and the relay station and 

ℎ𝑅,𝐷 is the channel gain between the relay and the destination. Also we denote 𝑑𝑆1,𝐷, 𝑑𝑆2,𝐷 as the 

distance between the source1, source2 and the destination, 𝑑𝑆1,𝑅, 𝑑𝑆2,𝑅 as the distance between the 

source1, source2 and the relay and 𝑑𝑅,𝐷 as the distance between the relay and the destination. 
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Coverage definition 

In this paper the definition of the coverage has a closed relation to the concept of the outage 

capacity in [19] and to what defined in [15] for relay channel, and we consider it for MARC as a 

geographic region at which the rates of at least 𝑅1, 𝑅2 > 0 is guaranteed, i.e., 

 

𝐴(𝑑𝑅,𝐷) ≝ {𝑑𝑆1,𝑅 , 𝑑𝑆1,𝐷: 𝐶(𝑑𝑅,𝐷 , 𝑑𝑆1,𝑅 , 𝑑𝑆1,𝐷) ≥ 𝑅1;  𝑑𝑆2,𝑅 , 𝑑𝑆2,𝐷: 𝐶(𝑑𝑅,𝐷 , 𝑑𝑆2,𝑅 , 𝑑𝑆2,𝐷) ≥

𝑅2;  𝑑𝑆1,𝑅 , 𝑑𝑆2,𝑅 , 𝑑𝑆1,𝐷 , 𝑑𝑆2,𝐷: 𝐶(𝑑𝑅,𝐷 , 𝑑𝑆1,𝑅 , 𝑑𝑆2,𝑅 , 𝑑𝑆1,𝐷 , 𝑑𝑆2,𝐷) ≥ 𝑅1 + 𝑅2},               (3) 

 

where 𝑅1, 𝑅2 denotes the desired transmission rates for source 1 and source 2 in bps/Hz, 

respectively, 𝐶(𝑑𝑅,𝐷, 𝑑𝑆1,𝑅 , 𝑑𝑆1,𝐷), 𝐶(𝑑𝑅,𝐷, 𝑑𝑆2,𝑅 , 𝑑𝑆2,𝐷), 𝐶(𝑑𝑅,𝐷 , 𝑑𝑆1,𝑅 , 𝑑𝑆2,𝑅 , 𝑑𝑆1,𝐷 , 𝑑𝑆2,𝐷) are the 

channel capacity region terms when there is a fixed distance between the destination and the 

relay(𝑑𝑅,𝐷), also we denote 𝑑𝑆1,𝐷, 𝑑𝑆2,𝐷 as the distance between the source1, source2 and the 

destination respectively, 𝑑𝑆1,𝑅, 𝑑𝑆2,𝑅 as the distance between the source1, source2 and the relay 

respectively as shown in Fig. 1. 

B. Achievable rate regions for two-user Gaussian MARC  

Theorem 1. [Theorem 1,[9]] The inner bound rate region for discrete memoryless (DM) MARC 

with common message via partial decode and forward strategy is the union set of rate tuples 

(𝑅0, 𝑅1, 𝑅2) satisfying: 

 

{
 
 

 
 𝑅1 ≤ min(𝐼(𝑋1; 𝑌𝑅|𝑋𝑅, 𝑋2, 𝑈0, 𝑉0, 𝑉1, 𝑉2), 𝐼(𝑋1, 𝑋𝑅; 𝑌𝐷|𝑋2, 𝑈0, 𝑉0, 𝑉2))

𝑅2 ≤ min(𝐼(𝑋2; 𝑌𝑅|𝑋𝑅 , 𝑋1, 𝑈0, 𝑉0, 𝑉1, 𝑉2), 𝐼(𝑋2, 𝑋𝑅; 𝑌𝐷|𝑋1, 𝑈0, 𝑉0, 𝑉1))

𝑅1 + 𝑅2 ≤ min(𝐼(𝑋1, 𝑋2; 𝑌𝑅|𝑋𝑅 , 𝑈0, 𝑉0, 𝑉1, 𝑉2), 𝐼(𝑋1, 𝑋2, 𝑋𝑅; 𝑌𝐷|𝑈0, 𝑉0))

𝑅0 + 𝑅1 + 𝑅2 ≤ min(𝐼(𝑋1, 𝑋2; 𝑌𝑅|𝑋𝑅 , 𝑉0, 𝑉1, 𝑉2), 𝐼(𝑋1, 𝑋2, 𝑋𝑅; 𝑌𝐷)) }
 
 

 
 

              (4) 

 

where 𝑅0, 𝑅1, 𝑅2 are sources common message rate, source 1 private message rate and source 2 

private message rate, respectively. 𝑈0 is the common message sent by the relay, 𝑉0  is the common 

message sent by the sources which can be decoded at the relay. 𝑉1, 𝑉2 are the private messages which 

can be decoded at the relay sent via source 1 and source 2, respectively.  

 

Proof: refer to [9]. 

 

Theorem 2. [Theorem 3,[9]] An achievable rate region for Gaussian MARC with common message 

is given as follows: 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑅1 ≤ 𝑚𝑖𝑛 {

1

2
log (1 +

𝛾1𝑝1

𝑁𝑅
) ,

1

2
log (1 +

(𝛾1+𝛽1)𝑝1+𝛼𝑅𝑝𝑅+2√𝛼𝑅𝛽1𝑝1𝑝𝑅

𝑁𝐷
)
}

𝑅2 ≤ 𝑚𝑖𝑛 {

1

2
log (1 +

𝛾2𝑝2

𝑁𝑅
) ,

1

2
log (1 +

(𝛾2+𝛽2)𝑝2+𝛽𝑅𝑝𝑅+2√𝛽𝑅𝛽2𝑝2𝑝𝑅

𝑁𝐷
)
}

 

𝑅1 + 𝑅2 ≤  𝑚𝑖𝑛 {

1

2
log (1 +

𝛾1𝑝1+𝛾2𝑝2

𝑁𝑅
) ,

1

2
log (1 +

𝛾1𝑝1+𝛾2𝑝2+(√𝛼𝑅𝑝𝑅+√𝛽1𝑝1)
2
+(√𝛽𝑅𝑝𝑅+√𝛽2𝑝2)

2

𝑁𝐷
)
}

 

                      
𝑅0 + 𝑅1 + 𝑅2 ≤ 𝑚𝑖𝑛

{
 
 

 
 1

2
log (1 +

𝛾1𝑝1+𝛾2𝑝2+(√1−𝛼1−𝛽1−𝛾1√𝑝1+√1−𝛼2−𝛽2−𝛾2√𝑝2)
2

𝑁𝑅
) ,

1

2
log(

1 +
𝑝1+𝑝2+𝑝𝑅+2√𝑝1𝑝𝑅(√𝛼𝑅𝛽1+√𝛼1(1−𝛼𝑅−𝛽𝑅))+2√𝑝2𝑝𝑅(√𝛽𝑅𝛽2+√𝛼2(1−𝛼𝑅−𝛽𝑅))

𝑁𝐷
+

2√𝑝1𝑝2(√𝛼1𝛼2+√(1−𝛼1−𝛽1−𝛾1)(1−𝛼2−𝛽2−𝛾2)))

𝑁𝐷

)

}
 
 

 
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (5) 

 

 
Proof: refer to [9]. 

 

Explanatory note for the proof in Theorem 2: Theorem 2 is the extended version of Theorem 1 to 

the continuous alphabet Gaussian channel. As shown in Fig. 1, we consider independent AWGN 𝑍𝐷, 

𝑍𝑅 with the variance 𝑁𝐷, 𝑁𝑅 respectively. The sources and the relay have individual allocated powers. 

Each node allocates to each message a portion of its available transmit power. Denote 𝑊0 as the 

common message sent by the sources which cannot be decoded at the relay, 𝑇1, 𝑇2 as the private 

message which can be decoded at the relay sent by the sources 1,2 respectively. 𝑊1,𝑊2 are the private 

message which cannot be decoded at the relay sent by the sources 1,2, respectively. Consider the 

independent, zero mean and unit variance Gaussian random variables V0,W0, Tk,Wk, k = 1,2 , The 

transmit signal can be written as: 

 

𝑋1 = √𝑃1(√𝛼1𝑉0 +√𝛽1𝑇1 +√1 − 𝛼1 − 𝛽1 − 𝛾1𝑊0 +√𝛾1𝑊1)           

𝑋2 = √𝑃2(√𝛼2𝑉0 +√𝛽2𝑇2 +√1 − 𝛼2 − 𝛽2 − 𝛾2𝑊0 + √𝛾2𝑊2)                    (6) 

𝑋𝑅 = √𝑃𝑅(√𝛼𝑅𝑇1 +√𝛽𝑅𝑇2 +√1 − 𝛼𝑅 − 𝛽𝑅𝑉0)                                      
 

where  𝛼𝑘 , 𝛽𝑘𝑎𝑛𝑑 𝛾𝑘 ∈ [0, 1], 𝑘 = 1,2, such that 𝛼𝑘 + 𝛽𝑘 + 𝛾𝑘  ≤ 1 and 𝛼𝑅 + 𝛽𝑅 ≤ 1. Denote 𝛼𝑘  as 

the portion of source power, 𝑃𝑘 , allocated to the part of the message which is in common with the 

other source message’s and can be decoded at the relay. Similarly, 𝛽𝑘 is the portion of the source 
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power, 𝑃𝑘 , allocated to the part of the message which is private and can be decoded at the relay. 𝛾𝑘 is 

the portion of the source power, 𝑃𝑘 , allocated to the private message which cannot be decoded at the 

relay.  𝛼𝑅 𝑎𝑛𝑑 𝛽𝑅 are the portions of the relay power 𝑃𝑅 allocated to the private message of the source 

1 and source 2 respectively. 

Considering the path loss and channel gains in Gaussian multiple access relay channel, the 

achievable rates in equation (5) would change as shown in the next Section. 

III. MAIN THEOREMS 

In this section, considering fixed desired transmission rates, we obtain coverage region in Gaussian 

MARC in cellular network based on an exact expression for the ergodic capacity and next, we extend 

the results to the Rayleigh fading Gaussian MARC. We consider there is no common message 

between the sources and we try to obtain the coverage region based on maximizing 𝑅1, 𝑅1 + 𝑅2. 

A- Coverage region in Gaussian MARC 

In this subsection, we derive the coverage region of Gaussian Multiple- Access Relay Channel. 

Theorem 3. The coverage region in Gaussian MARC is proved to be (as explained above, the 

coverage region is studied by considering the rates 𝑅1, 𝑅1 + 𝑅2 ): 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑑𝑆1,𝑅 ≤ (

𝛾1𝑝1

𝑁𝑅(𝑒2𝑅1−1)
)

1

𝛼
                                                                  (7 − 𝑎)

𝑑𝑆2,𝑅 ≤ (
𝛾2𝑝2

𝐴
)

1

𝛼
                                                                             (7 − 𝑏)

dS1,D ≤

(

 
 (γ1+β1)p1

√
αRβ1p1pR

dR,D
α +(γ1+β1)p1B−√

αRβ1p1pR
dR,D
α

)

 
 

2

α

                            (7 − 𝑐)

   

dS2,D ≤ (
C

√A′
2
+B′C−A′

)

2

α                                                                    (7 − 𝑑)

     

}
 
 
 
 
 
 

 
 
 
 
 
 

            

 

where: 𝐴 = 𝑁𝑅(𝑒
2(𝑅1+𝑅2) − 1) −

𝛾1𝑝1

𝑑𝑆1,𝑅
𝛼 ,B = ND(e

2R1 − 1) −
αRpR

dR,D
α ,C =  (γ2 + β2)p2 , A

′ =

 √
βRβ2p2pR

dR,D
α  ,  B′ =  ND(e

2(R1+R2) − 1) −
γ1p1

dS1,D
α − (√

αRpR

dR,D
α +√

β1p1

dS1,D
α  )

2

−
βRpR

dR,D
α  and also 𝑑𝑆1,𝐷 , 

𝑑𝑆2,𝐷 is the distance between the source1, source2 and the destination, 𝑑𝑆1,𝑅 , 𝑑𝑆2,𝑅 is the distance 

between the source1, source2 and the relay, respectively. And 𝑑𝑅,𝐷 is the distance between the relay 

and the destination. 
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Proof of (𝟕 − 𝒂): The desired transmission rates 𝑅1, 𝑅1 + 𝑅2 by considering the sources-relay links 

in equation (5) and power attenuation due to path loss can be defined as follows:  

 

{
 
 

 
 𝑅1 ≤

1

2
log (1 +

𝛾1𝑝1

𝑁𝑅𝑑𝑆1,𝑅
𝛼 )

𝑅1 + 𝑅2 ≤ 
1

2
log (1 +

𝛾1𝑝1
𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2
𝑑𝑆2,𝑅
𝛼

𝑁𝑅
)
}
 
 

 
 

                              (8) 

In (8) we consider 𝑅1 and 𝑅1 + 𝑅2 as maximum achievable rates which the sources transmit and 

try to find maximum acceptable distance between the sources and the relay and the destination to 

satisfy equation (8). Then the distance between the source 1 and the relay (𝑑𝑆1,𝑅) can be expressed as 

follow: 

𝑑𝑆1,𝑅 ≤ (
𝛾1𝑝1

𝑁𝑅(𝑒2𝑅1−1)
)
1

𝛼                                             (9) 

 

Proof of (𝟕 − 𝒃): Regarding equations (8) and (9), the distance between the source2 and the relay 

station can be obtained as follows: 

𝑑𝑆2,𝑅 ≤ (
𝛾2𝑝2

𝐴
)
1

𝛼                                               (10) 

 

where: 𝐴 = 𝑁𝑅(𝑒
2(𝑅1+𝑅2) − 1) −

𝛾1𝑝1

𝑑𝑆1,𝑅
𝛼 .  

Since 𝑅1, 𝑅2 cannot be maximized simultaneously, the coverage region of the source1 and source 2, 

regarding maximizing  𝑅1, 𝑅1 + 𝑅2, cannot be symmetric. 

 

Proof of (𝟕 − 𝒄), (𝟕 − 𝒅) : Considering the sources-destination links in equation (5), the desired 

transmission rates for computing coverage area considering path loss can be expressed as: 

 

{
  
 

  
 

𝑅1 ≤
1

2
log(1 +

(𝛾1+𝛽1)
𝑝1

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅
𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1
𝑑𝑆1,𝐷
𝛼

𝑝𝑅
𝑑𝑅,𝐷
𝛼

𝑁𝐷
)

R1 + R2 ≤
1

2
log (1 +

γ1
p1

dS1,D
α +γ2

p2
dS2,D
α +(√αR

pR
dR,D
α +√β1

p1
dS1,D
α )2+(√βR

pR
dR,D
α +√β2

p2
dS2,D
α )2

ND
)}
  
 

  
 

              (11)  

 

Similarly, by considering (11), the sources to destination distance can be obtained after computing 

some mathematical equations as follows: 
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 dS1,D ≤

(

 
 (γ1+β1)p1

√
αRβ1p1pR

dR,D
α +(γ1+β1)p1B−√

αRβ1p1pR
dR,D
α

)

 
 

2

α

                                      (12) 

 

where B = ND(e
2R1 − 1) −

αRpR

dR,D
α  , and 

 d2D ≤ (
C

√A′
2
+B′C−A′

)

2

α
                                                   (13) 

 

where:  A′ = √
βRβ2p2pR

dR,D
α ,  C =  (γ2 + β2)p2,  B′ = ND(e

2(R1+R2) − 1) −
γ1p1

dS1,D
α −

(√
αRpR

dR,D
α +√

β1p1

dS1,D
α  )

2

−
βRpR

dR,D
α . 

 

Considering equations (9, 10, 12, 13), the geographical location of the sources can be obtained in 

the cellular network due to fixed location of destination (Base station) and relay. 

B- Coverage region in Rayleigh fading Gaussian MARC 

In this sub-section we consider wireless Rayleigh fading environment and extend the coverage 

region computation in this area.                                                                                                                   

Theorem 4. The coverage region in Rayleigh fading Gaussian MARC is proved to be: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
dS1,R ≤ (

γ1p1σ1R
2

NR

π2

π2−16
Ln (

4R1

√π
))

1

α

                                                                              (14 − 𝑎)

dS1,D ≤ (
2(γ1+β1)p1σS1,D

2

√
π2σR,D

2 αRβ1p1pR

4dR,D
α +4(γ1+β1)p1σS1,D

2 (2R1ND−
αRpRσR,D

2

dR,D
α )−

π

2
√
σR,D
2 αRβ1p1pR

dR,D
α

)
2

α        (14 − 𝑏)

dS2,D ≤ (
2(γ2+β2)σS2,D

2 p2

√B2+4C(γ2+β2)σS2,D
2 p2−B

)

2

α

                                                                             (14 − 𝑐)

}
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where:𝑅1 <
√𝜋

4
, B =

π

2
√
βRβ2p2pRσS2,D

2 σR,D
2

dR,D
α , C = 2(R1 + R2)ND −

(γ1+β1)σS1,D
2 p1

dS1,D
α −

(αR+βR)σR,D
2 pR

dR,D
α −

π

2
√
αRβ1p1pRσS1,D

2 σR,D
2

dS1,D
α dR,D

α    

and also 𝑑𝑆1,𝐷 , 𝑑𝑆2,𝐷 is the distance between the source1, source2 and the destination, 𝑑𝑆1,𝑅 , 𝑑𝑆2,𝑅 is 

the distance between the source1, source2 and the relay and 𝑑𝑅,𝐷 is the distance between the relay and 

the destination. Note that an analytical closed form bound of 𝑑𝑆2,𝑅 is not mentioned in Theorem 4. 

However, 𝑑𝑆2,𝑅 is obtained numerically in numerical results. 

 

Proof: 

 

Part 1: As mentioned before, because of being an open problem of MARC capacity, the lower 

bound of channel is considered. Consider the wireless multiple access relay channel, the achievable 

rate regions in equation (4) regarding the equations (1), (2) are used to obtain Rayleigh fading 

Gaussian MARC achievable rates. Since in the Gaussian MARC the channel gains in equations (1), 

(2) are assumed to be 1, the achievable rate regions for 𝑅1, 𝑅1 + 𝑅2 in the Rayleigh fading Gaussian 

MARC, assuming that the receiver and the relay are coherent, can be expressed by extending the 

Gaussian MARC achievable rates in equation (5) as follow: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑅1 ≤ 𝑚𝑖𝑛

{
  
 

  
 

1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 ) ,

1

2
log

(

 
 
1 +

(𝛾1+𝛽1)
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1𝑝𝑅|ℎ𝑆1,𝐷|
2
|ℎ𝑅,𝐷|

2

𝑑𝑆1,𝐷
𝛼 𝑑𝑅,𝐷

𝛼

𝑁𝐷

)

 
 

}
  
 

  
 

  

𝑅1 + 𝑅2 ≤  𝑚𝑖𝑛

{
 
 
 
 

 
 
 
 1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2|ℎ𝑆2,𝑅|
2

𝑑𝑆2,𝑅
𝛼

𝑁𝑅
) ,

1

2
log

(

 
 
1 +

𝛾1
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛾2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 +(√𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽1

𝑝1|ℎ𝑆1,𝐷|
2

𝑑𝑆1,𝐷
𝛼 )

2

+(√𝛽𝑅
𝑝𝑅|ℎ𝑅,𝐷|

2

𝑑𝑅,𝐷
𝛼 +√𝛽2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 )

2

𝑁𝐷

)

 
 

}
 
 
 
 

 
 
 
 

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

         (15) 

 

Part 2: Since, the channel gains are random variables; in order to achieve certain rates, expectation 

should be computed. In Fig. 1, the links are independent with Rayleigh distributions and the square of 

a Rayleigh distribution (|ℎ|2) is an exponential distribution: 
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P|ℎ|2(|ℎ|
2) =  

1

σ2
e
−
h2

σ2                                                (16) 

 

where 𝜎 is scaling parameter in Rayleigh distribution.  

 

Proof of  (𝟏𝟒 − 𝒂): Noting to the distribution of the |ℎ|2 and the sources-relay links in equation 

(15), the coverage region is obtained as follows: 

𝑅1 ≤ 𝐸|ℎ𝑆1,𝑅|2 [
1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 )] = ∫ (

1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 ))(

1

𝜎𝑆1,𝑅
2 𝑒

−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
)

∞

0
𝑑ℎ𝑆1,𝑅

2         

=
1

2𝜎𝑆1,𝑅
2 ∫ log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 )𝑒

−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
𝑑ℎ𝑆1,𝑅

2∞

0
                                   (17) 

 
By computing the above expectation, the distance between source1 and the relay (𝑑𝑆1,𝑅) is obtained 

as follows:  

dS1,R ≤ (
γ1p1σS1,R

2

NR

π2

π2−16
Ln (

4R1

√π
))

1

α

                                  (18) 

 
The details of the proof can be found in Appendix A. it is notable that in the above equation 𝑅1 <

√𝜋

4
 

Regarding equation (18) and the sources-relay links in equations (15), the distance between the 

source 2 and the relay can be obtained by computing the expectation over |ℎ𝑆1,𝑅|
2and |ℎ𝑆2,𝑅|

2 as 

follows:  

 

 𝑅1 + 𝑅2 ≤ 𝐸|ℎ𝑆1,𝑅|2𝐸 |ℎ𝑆2,𝑅|2 [
1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑑𝑆2,𝑅
𝛼

𝑁𝑅
)]                       (19) 

P|ℎ𝑆1,𝑅|2(|ℎ𝑆1,𝑅|
2) =  

1

σS1,R
2 e

−
hS1,R
2

σS1,R
2

                               (20) 

P |ℎ𝑆2,𝑅|2( |ℎ𝑆2,𝑅|
2) =  

1

σS2,R
2 e

−
hS2,R
2

σS2,R
2

                               (21) 

By computing the above expectations, the sum of desired rates are as follows: 

R1 + R2 ≤
√π

4
[e
(1−

16

π2
)(

dS2,R
α NR

γ2p2σS2,R
2 )

(1 −
1

1−
γ2p2σS2,R

2 dS1,R
α

γ1p1σS1,R
2 dS2,R

α

)+
1

1−
γ2p2σS2,R

2 dS1,R
α

γ1p1σS1,R
2 dS2,R

α

e
(1−

16

π2
)(

dS1,R
α NR

γ1p1σS1,R
2 )

]   (22) 
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The maximum distance between the sources 2 and the relay (𝑑𝑆2,𝑅) can be obtained from (22). The 

details of the proof can be found in Appendix B. 

 

Proof of  (𝟏𝟒 − 𝒃): The sources to destination distances would be obtained by considering the 

source-destination links in equation (15). First the expected values are computed as follows: 

 

𝑅1 ≤
1

2
log

(

 
 
1 +

(𝛾1+𝛽1)
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1𝑝𝑅|ℎ𝑆1,𝐷|
2
|ℎ𝑅,𝐷|

2

𝑑𝑆1,𝐷
𝛼 𝑑𝑅,𝐷

𝛼

𝑁𝐷

)

 
 

                 (23) 

P|ℎ𝑆1,𝐷|2(|ℎ𝑆1,𝐷|
2) =  

1

σS1,D
2 e

−
hS1,D
2

σS1,D
2

                                                         (24) 

P|ℎ𝑅,𝐷|2(|ℎ𝑅,𝐷|
2) =  

1

σRD
2 e

−
hR,D
2

σR,D
2

                                                            (25) 

𝑅1 ≤ 𝐸|ℎ𝑆1,𝐷|2𝐸|ℎ𝑅,𝐷|2

[
 
 
 
 
1

2
log

(

 
 
1 +

(𝛾1+𝛽1)
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1𝑝𝑅|ℎ𝑆1,𝐷|
2
|ℎ𝑅,𝐷|

2

𝑑𝑆1,𝐷
𝛼 𝑑𝑅,𝐷

𝛼

𝑁𝐷

)

 
 

]
 
 
 
 

     (26) 

  R1 ≤
1

2
[(γ1 + β1)

p1σS1,D
2

NDdS1,D
α +

αRpRσR,D
2

NDdR,D
α +

π

2ND
√
σR,D
2 αRβ1p1pR

dS1,D
α dR,D

α ]                            (27) 

 

The details of the proof can be found in Appendix C. From equation (27), the distance between 

source 1 and destination can be obtained as follows: 

 

dS1,D ≤ (
2(γ1+β1)p1σS1,D

2

√
π2σR,D

2 αRβ1p1pR

4dR,D
α +4(γ1+β1)p1σS1,D

2 (2R1ND−
αRpRσR,D

2

dR,D
α )−

π

2
√
σR,D
2 αRβ1p1pR

dR,D
α

)
2

α                 (28) 

 
 

Proof of  (𝟏𝟒 − 𝒄): Similarly, by considering the source-destination links in equation (15) and the 

source1- destination distance in (28), the source2- destination distance can be obtained by computing 

the same expectations as follows: 
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𝑅1 + 𝑅2 ≤
1

2
log (1 +

𝛾1
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛾2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 +(√𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽1

𝑝1|ℎ𝑆1,𝐷|
2

𝑑𝑆1,𝐷
𝛼 )2+(√𝛽𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 )2

𝑁𝐷
)       (29) 

 

P|ℎ𝑆2,𝐷|2(|ℎ𝑆2,𝐷|
2) =  

1

σS2,D
2 e

−
hS2,D
2

σS2,D
2

                                        (30) 

 

 

𝑅1 + 𝑅2 ≤ 𝐸
|ℎ𝑆1,𝐷|

2𝐸
|ℎ𝑆2,𝐷|

2𝐸
|ℎ𝑅,𝐷|

2 

[
 
 
 
 
1

2
log (1 +

𝛾1
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛾2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 +(√𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽1

𝑝1|ℎ𝑆1,𝐷|
2

𝑑𝑆1,𝐷
𝛼 )2+(√𝛽𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 )2

𝑁𝐷
)

]
 
 
 
 

(31) 

 

R1 + R2 ≤
1

2
{
(γ1+β1)σS1,D

2 p1

NDdS1,D
α +

(γ2+β2)σS2,D
2 p2

NDdS2,D
α +

(αR+βR)σR,D
2 pR

NDdR,D
α +

π

2ND
(√

αRβ1p1pRσS1,D
2 σR,D

2

dS1,D
α dR,D

α +

√
βRβ2p2pRσS2,D

2 σR,D
2

dS2,D
α dR,D

α )}                                     (32) 

 

The details of proof can be found in Appendix D. Also from equation (32), the distance between 

source 2 and destination can be obtained as follows: 

dS2,D ≤ (
2(γ2+β2)σS2,D

2 p2

√B2+4C(γ2+β2)σS2,D
2 p2−B

)

2

α

                               (33) 

 

where:  B =
π

2
√
βRβ2p2pRσS2,D

2 σR,D
2

dR,D
α ,  C = 2(R1 + R2)ND −

(γ1+β1)σS1,D
2 p1

dS1,D
α −

(αR+βR)σR,D
2 pR

dR,D
α −

π

2
√
αRβ1p1pRσS1,D

2 σR,D
2

dS1,D
α dR,D

α  

 

Of equations (18, 22, 28, 33), the geographical location of the sources can be obtained in Rayleigh 

fading GMARC due to fixed location of destination (Base station) and relay in the cellular network. 

As mentioned before, since we try to maximize 𝑅1, 𝑅1 + 𝑅2 simultaneously, the coverage region of 

the sources cannot be symmetric. 
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Figure 2. The Coverage region of Multiple-Access Channel, Source1, with and without the Relay. 

 

 

Figure 3. The Coverage region of Multiple-Access Channel, Source2, with and without the Relay. 

 

IV. NUMERICAL RESULTS 

In this section, with the help of computing we present the coverage area of Gaussian MARC and 

then extend it to Rayleigh GMARC and compare them with the coverage region of multiple access 

channel (MAC). For Gaussian MARC we assume that there is no common message between the 

sources and the channel parameters as: 𝛼 = 3.52, 𝛼1,2 = 0,  𝛽1 = 0.4, 𝛾1 = 0.6,  𝛽2 = 0.4, 𝛾2 =

0.6, 𝛼𝑅 = 0.35, 𝛽𝑅 = 0.65, 𝑃𝑅 = 0.2 𝑤𝑎𝑡𝑡, 𝑃1,2 = 0.1 𝑤𝑎𝑡𝑡, 𝑑𝑅,𝐷 = 20𝑚,𝑁𝑅 = 10
−7, 𝑁𝐷 =

10−7, 𝑅1 = 1.75, 𝑅2 = 0.75 . 

Y-axis 

X-axis 

                The Coverage Region of Gaussian MARC, Source 1 

- - - - - - -   The Coverage Region of Gaussian MAC, Source 1 

Y-axis 

X-axis 

                The Coverage Region of Gaussian MARC, Source 2 

- - - - - - -   The Coverage Region of Gaussian MAC, Source 2 
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Figure 4.The Coverage region of Wireless Gaussian Multiple-Access Channel, Source1, with and without Relay. 

 

 

 

Figure 5. The Coverage region of Wireless Gaussian Multiple-Access Channel, Source2, with and without Relay. 

 

Fig. 2 and Fig. 3 shows the coverage region for source 1 and source 2 based on the desired rates 

while the destination (Base Station) and the relay are located at fixed locations in (0,0) and (𝑑𝑅,𝐷,0) 

respectively. As shown in the figures by using the relay in the cellular network, the coverage area 

extends significantly compared with MAC. Furthermore, 𝑅1, 𝑅2 cannot be maximized simultaneously. 

As a result, the coverage region of the source1 and source2 regarding maximizing 𝑅1, 𝑅1 + 𝑅2 cannot 

be symmetric.  

    The coverage area of Rayleigh GMARC is depicted in Fig. 4 and Fig. 5 while the destination (Base 

Station) and the relay are located at fixed locations in (0,0) and (𝑑𝑅,𝐷,0) respectively. In this situation 

X-axis 

Y-axis 

                The Coverage Region of Wireless GMARC, Source1 

- - - - - - -   The Coverage Region of Wireless GMAC, Source1 

X-axis 

Y-axis 

                The Coverage Region of Wireless GMARC, Source 2 

- - - - - - -   The Coverage Region of Wireless GMAC, Source 2 
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the channel parameters are assumed to be:  𝛼 = 3.52, 𝛼1,2 = 0,  𝛽1 = 0.4,  𝛾1 = 0.6,  𝛽2 = 0.4, 𝛾2 =

0.6, 𝛼𝑅 = 0.35, 𝛽𝑅 = 0.65, 𝑃𝑅 = 0.2 𝑤𝑎𝑡𝑡, 𝑃1,2 = 0.1 𝑤𝑎𝑡𝑡, 𝑑𝑅,𝐷 = 35𝑚,𝑁𝑅 = 10
−7, 𝑁𝐷 = 5 ×

10−7, 𝑅1 = 0.4, 𝑅2 = 0.5. As shown in the figures, the coverage region has been increased by using 

the relay station in the cellular network. Note that 𝑑𝑆2,𝑅 is obtained numerically in numerical results 

from equation (22). 

 

V. CONCLUSION 

In this paper we investigated the influence of the relay on coverage region of cellular network in 

Multiple Access Channel. Considering the case of Gaussian MARC and Rayleigh Gaussian MARC, 

we defined the coverage region for the cellular network, and derived an exact analytical expression 

for desired transmission rates and fixed relay location at which the coverage region is maximized. 

Numerical results confirm the accuracy of our analysis, and show that using the relay station in 

Multiple Access Channel would improve the coverage area for fixed desired transmission rates, and 

also increases the transmission rates for a fixed coverage area in the cellular network. 

 

APPENDIX A:  Proof of Equation (18) 

𝑅1 ≤ 𝐸|ℎ𝑆1,𝑅|2 [
1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 )] = ∫ (

1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 ))(

1

𝜎𝑆1,𝑅
2 𝑒

−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
)

∞

0
𝑑ℎ𝑆1,𝑅

2         

=
1

2𝜎𝑆1,𝑅
2 ∫ log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼 )𝑒

−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
𝑑ℎ𝑆1,𝑅

2∞

0
                                           (34) 

 

Referring to Integral table [20] we have: 

∫ 𝑒−𝑝𝑡 log(1 + 𝑎𝑡) 𝑑𝑡 = −
𝑒
𝑝
𝑎

𝑝
𝐸𝑖(−

𝑝

𝑎
)

∞

0
                                   (35) 

where:  𝐸i(−x) = −∫
e−t

t
dt

∞

x
 

Considering (35), the equation (34) can be obtained as: 

𝑅1 ≤ −
1

2
exp (

𝑁𝑅𝑑𝑆1,𝑅
𝛼

𝛾1𝑝1𝜎𝑆1,𝑅
2 )𝐸𝑖(−

𝑁𝑅𝑑𝑆1,𝑅
𝛼

𝛾1𝑝1𝜎𝑆1,𝑅
2 )                                   (36) 

 

The exponential integral (Ei) was approximated in [21] as follows: 

𝐸𝑖(−𝑥) = −4√2𝑎𝑁𝑎𝐼 ∑ ∑ √𝑏𝑛𝑒
−4𝑏𝑛𝑏𝑖𝑥𝐼+1

𝑖=1
𝑁+1
𝑛=1                                 (37) 

 

where: θ0 = 0 < θ1 < θ2 < ⋯ < θN+1 =
π

2
 , an =

(θn−θn−1)

π
, 𝑏𝑛 =

1

2

𝑐𝑜𝑡(𝜃𝑛−1)−cot (𝜃𝑛)

(𝜃𝑛−𝜃𝑛−1)
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For 𝑁 = 𝐼 = 1 we have: 𝑎𝑁 = 𝑎𝐼 =
1

4
, 𝑏1 = ∞, 𝑏2 = 

2

𝜋
. So, 𝐸𝑖(−𝑥)can be approximated as: 

Ei(−x)~ −
√π

2
e
−
16

π2
x
                                                   (38) 

The equation (36) can be approximated as follows: 

R1 ≤
√π

4
e
(1−

16

π2
)
NRdS1,R

α

γ1p1σS1,R
2

                                                (39) 

With having fixed desired transmission rate, the source1-relay distance can be obtained: 

dS1,R ≤ (
γ1p1σS1,R

2

NR

π2

π2−16
Ln (

4R1

√π
))

1

α

                                   (40) 

 

APPENDIX B: Proof of Equation (22) 

𝑅1 + 𝑅2 ≤ 𝐸|ℎ𝑆1,𝑅|2𝐸 |ℎ𝑆2,𝑅|2 [
1

2
log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑑𝑆2,𝑅
𝛼

𝑁𝑅
)]                    (41) 

𝐸|ℎ𝑆1,𝑅|2 [
1

2
log(1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑑𝑆2,𝑅
𝛼

𝑁𝑅
)] = ∫

1

2
log(1 +

∞

0

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑑𝑆2,𝑅
𝛼

𝑁𝑅
)( 

1

𝜎𝑆1,𝑅
2 𝑒

−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
)𝑑|ℎ𝑆1,𝑅|

2                           (42) 

 

Referring to Integral table [20] we have: 

∫ e−μxLn(B + x)dx =
1

μ
[LnB − eμBEi(−μB)]                            (43) 

Considering (35), (43), the equation (42) is obtained as: 

 

1

2𝜎𝑆1,𝑅
2 ∫ log (1 +

𝛾1𝑝1|ℎ𝑆1,𝑅|
2

𝑑𝑆1,𝑅
𝛼 +

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑑𝑆2,𝑅
𝛼

𝑁𝑅
)

∞

0
𝑒
−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
𝑑|ℎ𝑆1,𝑅|

2                      (44) 

 

=
1

2𝜎𝑆1,𝑅
2 [∫ 𝑙𝑜𝑔

𝛾1𝑝1

𝑁𝑅𝑑𝑆1,𝑅
𝛼

∞

0
𝑒
−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
𝑑|ℎ𝑆1,𝑅|

2 + ∫ log (
1+

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑁𝑅𝑑𝑆2,𝑅
𝛼

𝛾1𝑝1
𝑁𝑅𝑑𝑆1,𝑅

𝛼
+ |ℎ𝑆1,𝑅|

2)𝑒
−
ℎ𝑆1,𝑅
2

𝜎𝑆1,𝑅
2
𝑑|ℎ𝑆1,𝑅|

2∞

0
]   (45) 
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=
1

2

[
 
 
 
 
 
 

𝑙𝑜𝑔
𝛾1𝑝1

𝑁𝑅𝑑𝑆1,𝑅
𝛼 + log(

1+
𝛾2𝑝2 |ℎ𝑆2,𝑅|

2

𝑁𝑅𝑑𝑆2,𝑅
𝛼

𝛾1𝑝1
𝑁𝑅𝑑𝑆1,𝑅

𝛼
) − 𝑒(

 
 
1+
𝛾2𝑝2 |ℎ𝑆2,𝑅|

2

𝑁𝑅𝑑𝑆2,𝑅
𝛼

𝛾1𝑝1𝜎𝑆1,𝑅
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼

)

 
 

𝐸𝑖(−(
1+

𝛾2𝑝2 |ℎ𝑆2,𝑅|
2

𝑁𝑅𝑑𝑆2,𝑅
𝛼

𝛾1𝑝1𝜎𝑆1,𝑅
2

𝑁𝑅𝑑𝑆1,𝑅
𝛼

))

]
 
 
 
 
 
 

        (46) 

 

by  A =
γ1p1

NRdS1,R
α , C =

γ2p2

NRdS2,R
α , t =  |ℎ𝑆2,𝑅|

2: 

𝐸|ℎ𝑆1,𝑅|2 |ℎ𝑆2,𝑅|2[… ] = ∫
1

2
[𝑙𝑜𝑔𝐴 + log (

1+𝐶

𝐴
) − 𝑒

(
1+𝐶

𝐴𝜎𝑆1,𝑅
2 )

𝐸𝑖(− (
1+𝐶

𝐴𝜎𝑆1,𝑅
2 ))]

∞

0
( 

1

𝜎𝑆2,𝑅
2 𝑒

−
𝑡

𝜎𝑆2,𝑅
2
)𝑑𝑡  

              (47) 

Referring to Integral table [20] we have: 

∫ e−βxEi(−ax)dx =
−1

β
[e−βxEi(−ax) + Ln (1 +

β

a
) − Ei(−(a + β)x)]

x

0
               (48) 

 

∫ Ei(−βx)e−μxdx =
−1

μ
Ln(1 +

μ

β
)

∞

0
                                (49) 

 

Of the above equations, the equation (47) becomes: 

𝑅1 + 𝑅2 ≤ 

1

2𝜎𝑆2,𝑅
2 𝜇

[exp (
1

𝐶𝜎𝑆2,𝑅
2 )𝐸𝑖 (−

1

𝐶𝜎𝑆2,𝑅
2 ) − exp (

1

𝐴𝜎𝑆1,𝑅
2 )𝐸𝑖 (−

1

𝐴𝜎𝑆1,𝑅
2 )] −

1

2
exp (

1

𝐶𝜎𝑆2,𝑅
2 )𝐸𝑖 (−

1

𝐶𝜎𝑆2,𝑅
2 )      

 (50) 

where: 𝜇 =
1

𝜎𝑆2,𝑅
2 −

𝐶

𝐴𝜎𝑆1,𝑅
2 . 

Using approximation of 𝐸𝑖(−𝑥)as mentioned in (38) we have: 

 

R1 + R2 ≤
√π

4
[e
(1−

16

π2
)(

dS2,R
α NR

γ2p2σS2,R
2 )

(1 −
1

1−
γ2p2σS2,R

2 dS1,R
α

γ1p1σS1,R
2 dS2,R

α

)+
1

1−
γ2p2σS2,R

2 dS1,R
α

γ1p1σS1,R
2 dS2,R

α

e
(1−

16

π2
)(

dS1,R
α NR

γ1p1σS1,R
2 )

]   (51) 

 
 

APPENDIX C: Proof of Equation (28) 

𝑅1 ≤ 𝐸|ℎ𝑆1,𝐷|2𝐸|ℎ𝑅,𝐷|2

[
 
 
 
 
1

2
log

(

 
 
1 +

(𝛾1+𝛽1)
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1𝑝𝑅|ℎ𝑆1,𝐷|
2
|ℎ𝑅,𝐷|

2

𝑑𝑆1,𝐷
𝛼 𝑑𝑅,𝐷

𝛼

𝑁𝐷

)

 
 

]
 
 
 
 

     (52) 
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𝐸|ℎ𝑆1,𝐷|2[… ] = ∫ (
1

2
log

(

 
 
1 +

∞

0

(𝛾1+𝛽1)
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1𝑝𝑅|ℎ𝑆1,𝐷|
2
|ℎ𝑅,𝐷|

2

𝑑𝑆1,𝐷
𝛼 𝑑𝑅,𝐷

𝛼

𝑁𝐷

)

 
 
)(

1

𝜎𝑆1,𝐷
2 𝑒

−
ℎ𝑆1,𝐷
2

𝜎𝑆1,𝐷
2
)𝑑|ℎ𝑆1,𝐷|

2  

(53) 
Using the inequality: log (1 + 𝑥) ≤ 𝑥 

 

E|ℎ1𝐷|2[… ] ≤ ∫
1

2
(

(𝛾1+𝛽1)
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +2√𝛼𝑅𝛽1

𝑝1𝑝𝑅|ℎ𝑆1,𝐷|
2
|ℎ𝑅,𝐷|

2

𝑑𝑆1,𝐷
𝛼 𝑑𝑅,𝐷

𝛼

𝑁𝐷
)(

1

𝜎𝑆1,𝐷
2 𝑒

−
ℎ𝑆1,𝐷
2

𝜎𝑆1,𝐷
2
)𝑑|ℎ𝑆1,𝐷|

2∞

0
  

(54) 
 

We have: 

 

∫ xe−axdx =
1

a2

∞

0
                                         (55) 

∫ √xe−μxdx =
√π

2
μ
−3

2
∞

0
                                     (56) 

 

After using above equations, (54) becomes: 

E|ℎ𝑆1,𝐷|2[… ] ≤
1

2
[
αRpR|ℎ𝑅,𝐷|

2

NDdR,D
α +

(γ1+β1)p1σS1,D
2

NDdS1,D
α +√

β1αRpR|ℎ𝑅,𝐷|2p1πσS1,D
2

ND
2dS1,D

α dR,D
α ]                   (57) 

 

𝑅1 ≤ 

𝐸|ℎ𝑆1,𝐷|2𝐸|ℎ𝑅,𝐷|2[… ] ≤ ∫ (
1

2
[
αRpR|ℎ𝑅,𝐷|

2

NDdR,D
α +

(γ1+β1)p1σS1,D
2

NDdS1,D
α +

∞

0

√
β1αRpR|ℎ𝑅,𝐷|2p1πσS1,D

2

ND
2dS1,D

α dR,D
α ])(

1

𝜎𝑅,𝐷
2 𝑒

−
ℎ𝑅,𝐷
2

𝜎𝑅,𝐷
2

) |ℎ𝑅,𝐷|
2                            (58) 

 

R1 ≤
1

2
[(γ1 + β1)

p1σS1,D
2

NDdS1,D
α +

αRpRσR,D
2

NDdR,D
α +

π

2ND
√
σR,D
2 αRβ1p1pR

dS1,D
α dR,D

α ]                         (59) 
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With having a fixed desired rate, the distance between source1 and destination can be obtained as 

follows: 

 

dS1,D ≤ (
2(γ1+β1)p1σS1,D

2

√
π2σR,D

2 αRβ1p1pR

4dR,D
α +4(γ1+β1)p1σS1,D

2 (2R1ND−
αRpRσR,D

2

dR,D
α )−

π

2
√
σR,D
2 αRβ1p1pR

dR,D
α

)
2

α                    (60) 

 

 

APPENDIX D: Proof of Equation (33) 

𝑅1 + 𝑅2 ≤ 𝐸
|ℎ𝑆1,𝐷|

2𝐸
|ℎ𝑆2,𝐷|

2𝐸
|ℎ𝑅,𝐷|

2 

[
 
 
 
 
1

2
log (1 +

𝛾1
𝑝1|ℎ𝑆1,𝐷|

2

𝑑𝑆1,𝐷
𝛼 +𝛾2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 +(√𝛼𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽1

𝑝1|ℎ𝑆1,𝐷|
2

𝑑𝑆1,𝐷
𝛼 )2+(√𝛽𝑅

𝑝𝑅|ℎ𝑅,𝐷|
2

𝑑𝑅,𝐷
𝛼 +√𝛽2

𝑝2|ℎ𝑆2,𝐷|
2

𝑑𝑆2,𝐷
𝛼 )2

𝑁𝐷
)

]
 
 
 
 

(61) 

Using the inequality: log (1 + 𝑥) ≤ 𝑥 the expectation in (61) will be computed the same as 

expectation in Appendix C.  

R1 + R2 ≤
1

2
{
(γ1+β1)σS1,D

2 p1

NDdS1,D
α +

(γ2+β2)σS2,D
2 p2

NDdS2,D
α +

(αR+βR)σR,D
2 pR

NDdR,D
α +

π

2ND
(√

αRβ1p1pRσS1,D
2 σR,D

2

dS1,D
α dR,D

α +

√
βRβ2p2pRσS2,D

2 σR,D
2

dS2,D
α dR,D

α )}                                 (62) 

With having fixed desired rates, the distance between source2 and destination can be obtained and 

equation (33) will be obtained. 

 

REFERENCES 

[1] E. C. Van Der Meulen, “Three-terminal communication channels,” Advances in applied Probability, pp. 120-154, 1971. 

[2] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,” IEEE Transactions on Information Theory,  vol. 

25, pp. 572-584, 1979. 

[3] A. El Gamal and M.R. Aref, “The capacity of the semideterministic relay channel(Corresp.),” IEEE Transactions on 

Information Theory, vol. 28, pp. 536-536, 1982. 

[4] T. M. Cover and K. Young-Han, “Capacity of a Class of Deterministic Relay Channels,” IEEE International 

Symposium on  Information Theory (ISIT), 2007, pp. 591-595. 

[5] M. Aleksic, P. Razaghi, and W. Yu, “Capacity of a class of modulo-sum relay channels,” IEEE Transactions on 

Information Theory,  vol. 55, pp. 921-930, 2009. 



20                                                                                   Extension of the Coverage Region of Multiple Access … 

[6] G. A. Hodtani and M. R. Aref, “Unified approach to the capacity evaluation of the relay channel,” IET 

communications, vol. 3, pp. 1208-1215, 2009. 

[7] G. Kramer and A. J. van Wijngaarden, “On the white Gaussian multiple-access relay channel,” IEEE International 

Symposium on Information Theory, 2000 , p. 40. 

[8] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE 

Transactions on Information Theory,  vol. 51, pp. 3037-3063, 2005. 

[9] M. Osmani‐Bojd and G. A. Hodtani, “On multiple‐access relay channel with common message,” Transactions on 

Emerging Telecommunications Technologies, 2014. DOI: 10.1002/ett.2821. 

[10] A. Sahebalam and G. A. Hodtani, “General and new inner bound for multiple-access relay channel and two certain 

capacity theorems,” IET Communications, vol. 7, pp. 1348-1359, 2013. 

[11] M. Osmani‐Bojd and G. A. Hodtani, “Multiple‐access relay channels with non‐causal channel state information at the 

relay,” Transactions on Emerging Telecommunications Technologies, 2014. DOI: 10.1002/ett.2900. 

[12] L. Sankaranarayanan, G. Kramer, and N. B. Mandayam, “Hierarchical sensor networks: capacity bounds and 

cooperative strategies using the multiple-access relay channel model,” First Annual IEEE Communications Society 

Conference on Sensor and Ad Hoc Communications and Networks, 2004, pp. 191-199. 

[13] R. Tandon and H. V. Poor, “On the capacity region of multiple-access relay channels,” 45th Annual Conference on 

Information Sciences and Systems (CISS), 2011, pp. 1-5. 

[14] B. Ghelber and R. Dabora, “The value of cooperation between relays in the multiple‐access channel with multiple 

relays,” Transactions on Emerging Telecommunications Technologies, vol. 23, pp. 341-359, 2012. 

[15] M. Osmani-Bojd, A. Sahebalam, and G. A. Hodtani, “Outage Probability Bound and Diversity Gain for Ultra-

Wideband Multiple-Access Relay Channels with Correlated Noises,” Journal of Communication Engineering, vol. 2, 

no. 1, pp. 22-42, 2013. 

[16] A. Sahebalam, M. Osmani-Bojd, G. A. Hodtani, and M. Ahadi, “Bounds for Multiple-Access Relay Channels with 

Feedback Via Two-way Relay Channel,” Journal of Communication Engineering, vol. 2, no. 3, pp. 168-182, 2013. 

[17] V. Aggarwal, A. Bennatan, and A. R. Calderbank, “On Maximizing Coverage in Gaussian Relay Channels,” IEEE 

Transactions on Information Theory,  vol. 55, pp. 2518-2536, 2009. 

[18] A. Alizadeh and G. A. Hodtani, “Analysis of capacity and coverage region for Rayleigh fading MIMO relay channel,” 

International Journal of Communication Systems, vol. 28, pp. 1462-1474, 2015. 

[19] F. Parzysz, Mai Vu, and F. Gagnon, “Impact of Propagation Environment on Energy-Efficient Relay Placement: Model 

and Performance Analysis,” IEEE Transactions on Wireless Communications,  vol. 13, pp. 2214-2228, 2014. 

[20] B. Razeghi, A. Alizadeh, S. Naseri, G. A. Hodtani, and S. A. Seyedin, “Analysis of coverage region for MIMO relay 

network with multiple cooperative DF-Relays,” 11th International Symposium on Wireless Communications Systems 

(ISWCS), 2014, pp. 297-302. 

[21] A. Host-Madsen, “On the capacity of wireless relaying,” IEEE Vehicular Technology Conference (VTC), 2002, pp. 

1333-1337. 

[22] D. Zwillinger, Table of integrals, series, and products: Elsevier, 2014. 

[23] A. A. Alkheir and M. Ibnkahla, “ An Accurate Approximation of the Exponential Integral Function Using a Sum of 

Exponentials,” IEEE Communications Letters, vol. 17, pp. 1364-1367, 2013. 

 


