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Abstract: Cyber-physical systems (CPSs) are deeply intertwining and integrating the physical 

processes with cyber components. In these intelligent systems, a process is monitored and 

controlled by cyber systems and different types of sensitive information is exchanged in a real-

time manner. Nowadays, the security of these systems has been considered increasingly. 

Connecting physical devices to the cyber network makes the critical infrastructures more 

vulnerable to the adversarial activities. The primary target of attacks against CPSs is often 

disrupting physical processes under control. Since, improving the security of CPSs has gained 

considerable importance nowadays. This paper presents a method for modeling the security of 

CPSs using stochastic Petri nets (SPNs). The proposed method models the system control loop 

associated with anomaly detection systems (ADSs) in normal behavior and under security 

attacks. By using this model, we can investigate the consequences of the integrity and denial 

of service attacks against CPSs and perform probabilistic and temporal analysis of the system 

under security attacks. By solving the proposed model, the security of CPSs is estimated in 

terms of metrics, such as mean-time-to-failure and availability. Finally, the security of a 

chemical plant is investigated as an illustrative example to represent the effectiveness of the 

proposed modeling method.  
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Stochastic Petri Nets (SPNs).  
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Abstract: For Orthogonal Frequency Division multiplexing (OFDM) systems in environments 

with high mobility and non-stationary channel characteristics, channel estimation is a very 

challenging task. To handle this issue, a deep learning (DL)-based channel estimation and data 

extraction algorithm is proposed. The purpose of this paper is to analyse DL-based OFDM data 

extraction algorithm in time-variant Rayleigh fading channels. Moreover, the model is examined 

in time-invariant environments. The proposed long short-term memory with projection layer 

(LSTMP) model, can not only exploit the features of channel variation from previous channel 

estimations, but also extract more features from pilots and received signals. Moreover, the 

LSTMP can take advantage of the LSTM estimation to further improve the performance of 

the channel estimation by reducing the complexity and increasing the accuracy. The LSTMP 

is first trained with simulated data in an offline manner and then tracks the dynamic channel 

in an online manner. The simulation results show that the proposed LSTMP model algorithm 

can be effectively employed to adapt to the characteristics of time-variant channels, compared 

to the conventional algorithms. Additionally, the trade-off between accuracy and complexity is 

discussed and compared with that of Convolutional Neural Network (CNN) and LSTM.  
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I.	 INTRODUCTION 

Orthogonal Frequency Division Multiplexing (OFDM) is one of the common modulation 

techniques due to its high spectral efficiency and its robustness against fading effects. 

It is common for fast fading time-varying channels to suffer from intercarrier interference (ICI) 

as a result of time variations within an OFDM block. To support high-speed mobile channels, 

the channel time-variation within a block must be considered. OFDM systems have narrow 

bandwidths for each subcarrier, which makes the signal robust against frequency selectivity 

caused by multi-path delay spread. 

However, OFDM is relatively sensitive to time-domain selectivity, which is induced by 

rapid temporal variations of a mobile channel. Due to its frequency selectivity and time-varying 

characteristics, wideband mobile communication systems require dynamic channel estimation. 

In practice, the channel may vary significantly, even within a single OFDM symbol. Usually, the 

normalized maximum Doppler frequency is used to measure the time variation of the channel. 

Channel estimation can be performed by inserting pilot tones into each subcarrier. Nowadays, in a 

rapidly changing wireless environment, it is of high importance to be able to gather channel state 

information (CSI) quickly and accurately. The basic principle of pilot-based channel estimation 

is that when the pilot symbol is transmitted, the receiver uses the symbol to determine channel 

information by comparing the received symbol to the transmitted symbol. 

In pilot arrangements, channel estimation can be based on the Least Squares method (LS) or the 

Minimum Mean Squares method (MMSE). However, despite its simplicity, the LS method suffers 

from a poor accuracy. For MMSE, which has a high computational complexity, it is necessary 

to have prior knowledge of second-order channel statistics and noise variance. As shown in [1], 

the existing channel estimators always suffer from performance degradation in real applications 

experiment. To support high-speed mobile channels, the channel time-variation within a block 

must be taken into account. Channel estimation can be summarized by two approaches, first of 

which is to estimate the equivalent discrete time channel taps [2,3] and the second is to directly 

estimate the physical propagation channel parameters such as multi-path delays and multi-path 

complex gains [4,5].

Recently, deep learning (DL) has drawn attention considering its great success in computer 

vision (CV), automatic speech recognition (ASR), and natural language processing (NLP). Several 

applications of DL have been proposed in various fields for two reasons [6]. Firstly, DL-based 

algorithms are data-driven, which means they are more robust against imperfections in real-world 

systems. In addition, multiple layers of simple operations, such as matrix-vector multiplications, 

are involved in DL-based algorithms, which benefit from a low computational complexity and 
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easy implementation with low-precision data types [7], which makes DL-based algorithms much 

more efficient. DL can be applied to the physical layer in several ways. For instance, it is possible 

to consider the model of deep neural networks (DNN) as a black box and attempt to learn the 

underlying relationships governing the inputs and outputs of the system [8]. 

For OFDM systems with frequency selective channels, a feed-forward neural network 

(FFNN)-based combined channel estimation and symbol detection technique is discussed in [9]. 

In the context of nonlinear distortion effects, the proposed algorithms outperform conventional 

estimators. Another algorithm has been proposed in [10] to develop online feed-forward deep 

learning-based estimators for doubly selective channels. The proposed algorithm exhibits 

superiority over standard linear MMSE estimators in all conditions. An equalized data model 

based on a 1-dimensional convolutional neural network (1D-CNN) has also been developed in 

[11]. Additionally, the 1D-CNN was compared to LS, MMSE, and FFNN in terms of bit error rate 

and mean square error, all of which show that the 1D-CNN provides improvement in terms of 

both BER and MSE when compared with LS, MMSE, and FFNN. More recently, a type of online 

recurrent neural network (RNN) called long-short term memory (LSTM) neural networks for 

OFDM systems through TR38.901 have been studied for pilots 64, 8, and 4, and three different 

optimization algorithms for DL are studied in [12], According to which as the number of pilots 

decrease, LSTM-based channel estimation proves to have the best performance compared to 

the conventional method. In [13], a combination of traditional methods and neural networks is 

proposed. In both channel estimation and signal detection, the traditional methods are first used 

for rough calculations; thereafter, the neural network is used to obtain the results. For highly 

mobile channels, an LSTM network followed by a multilayer perceptron network is used to track 

channel variations in [14]. Modelling channel estimation as a denoising problem and applying 

deep learning network to estimate channel coefficients from pilot observations containing noise is 

a widely used channel estimation scheme [15,16]. Another commonly accepted channel estimation 

scheme is to model channel estimation as a super-resolution problem. 

The time-frequency response of the communication channel can be regarded as an image, 

allowing an image super-resolution convolutional neural network (SRCNN) used in CV to be 

deployed for channel estimation [17-19]. A combination of SRCNN and denoising convolutional 

neural network was used in [17] for channel estimation. A deep residual channel estimation network 

(ReEsNet) was used in [18] to estimate the channel. Furthermore, in [19], the channel distribution 

was modelled on an image super-resolution generative adversarial network (SRGAN), which 

resulted in significant performance. In the training stage, the GAN learns from the adversarial 

discriminator and generator. In the prediction stage, only the generator part needs to be considered. 
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This can reduce the difficulty of the deployment of the model.

Another approach is to consider the task of the receiver as a whole and to train a neural 

network (NN) to replace the complete physical-layer receiver. Solutions of this type have been 

proposed, for instance, in [20,21], where a CNN-based receiver (referred to as DeepRx) is shown 

to achieve high performance especially under sparse pilot configurations. The work in [22], on the 

other hand, applies CNN to implement a receiver which extracts the bit estimates directly from a 

linear time-domain RX signal by learning the DFT operation. The performance boundaries of such 

fully learned receivers are studied in [23], where data-based bit error rate bounds of NN-based 

receivers are derived. Fully learned receivers have also been proven to be capable of dealing 

with various nonlinear effects, such as intercarrier interference (ICI) caused by extreme mobility 

[24]. As for hardware-induced nonlinearities, the impact of various hardware impairments on 

ML-based receivers has also been analysed in the literature. The preliminary results in [25] and 

[26] demonstrate the effectiveness of fully learned receivers in dealing with amplifier-induced 

nonlinearities. Additionally, in [27], transmitter-induced clipping effects are considered, with 

the discussed solution outperforming a non-ML baseline with similar complexity. Additionally, 

more recently, LSTM with projection layer (LSTMP) is proposed in OFDM systems in [28]. 

The LSTMP is shown to have superior performance compared with LSTM, Bi-LSTM and 

conventional methods. 

The contribution of this paper can be listed as follows:

�	In this work, we deploy the novel LSTMP model in which a projection layer is added to the 

LSTM model, while the previous works focus on LSTM or some other neural networks. 

This is shown to increase the performance and reduce the complexity compared with the 

previous models.

�	Additionally, we apply our model to time-varying multipath channel with high and rapid 

variations in time, while majority of the previous studies discuss time-invariant channels.

�	We compare the introduced model with other models including LSTM, CNN and 

conventional methods in channel estimation.

�	Furthermore, we analyse the effects of changing the number of pilots on our channel 

estimator model by showing the performance versus SNR as the number of pilots decrease.

�	The implementation time of the models is studied together with the computational 

complexity and then compared with the conventional models. 

In this paper, LSTMP neural network for channel estimation and data extraction is implemented 

where the model is used in Rayleigh channel. The performance of LSTMP is discussed in time- 
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Fig. 1. DL-Based Channel estimation & data extraction a) Online stage, b) Offline Stage. 

II. SYSTEM MODEL 

   In this section, the single-antenna OFDM systems model is presented, following which the 

conventional channel estimation techniques based on LS and MMSE are discussed. 

A. OFDM System Model 

The architecture of an OFDM system with DL-based channel estimation is illustrated in Fig.1, (a), 

where an OFDM frame with N  subcarriers and T  time slots is considered, with each time slot 

containing an OFDM symbol. 
 

Each frame contains K  blocks and can be split into two parts: the preamble and the information 

blocks. The transmitted signal after symbol mapping, ( )X k , shown as the transmitted data in Fig.1 

(b), is followed by an Inverse Discrete Fourier Transform (IDFT) which is expressed as (1): 

Fig. 1.  DL-Based Channel estimation & data extraction a) Online stage, b) Offline Stage

varying multipath channel with a frequency-selective response which varies over time. In addition, 

the model is analysed in a time-invariant multipath channel with a frequency-selective but static 

channel response. The introduced approach is more flexible than the conventional methods in that 

it does not need any prior knowledge about the channel state and can be deployed for any channel 

estimator. Also, the LSTMP shows better performance in a time-variant channel than LSTM and 

1-DCNN.

The rest of this paper is organized as follows: The system model for time-varying channels is 

introduced in Section 2. The proposed DL-based estimation algorithm is explained in Section 3. 

Numerical experiments are presented in Section 4 and eventually the paper is concluded in 

Section 5.
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II. SYSTEM MODEL

In this section, the single-antenna OFDM systems model is presented, following which the 

conventional channel estimation techniques based on LS and MMSE are discussed.

A. OFDM System Model

The architecture of an OFDM system with DL-based channel estimation is illustrated in Fig. 1, 

(a), where an OFDM frame with N  subcarriers and T  time slots is considered, with each time 

slot containing an OFDM symbol.

Each frame contains K  blocks and can be split into two parts: the preamble and the information 

blocks. The transmitted signal after symbol mapping, ( )X k , shown as the transmitted data in 
Fig.1 (b), is followed by an Inverse Discrete Fourier Transform (IDFT) which is expressed as (1):

( ) [( ( ))], 0,1,..., 1x n IFFT X k n N= = − 	 (1)

Following the addition of the cyclic prefix (CP), the signal can be expressed as (2):

( ), , 1,..., 1
( ), 0,1,2,..., 1CP

x n N n L L
x

x n n N
+ = − − + −

= = − 	
(2)

where L is the prefix length. Denoting the Rayleigh channel response by h, the received OFDM 

signal is then given as (3):

.y h x z= + 	 (3)

where z  is the i.i.d Additive White Gaussian Noise (AWGN) vector. y is illustrated as the 

generated dataset in Fig.1 (b). The generated dataset may then be fed into the neural network 

which is deployed together with the extracted data for applying the DL-based channel estimation. 

At the receiving end, after the CP removal, the Discrete Fourier transform (DFT) is used to shift 

the signals from the time domain into the frequency domain.

B. Conventional channel estimation

Wireless communication environments are commonly modelled by Rayleigh fading channels. In 

time domain Multi-path and Doppler shifting will result in different types of fading. Traditionally, 

the estimation of the channel can be done by deploying pilots embedded in the transmitted data. 

At the receiving end, the channel parameters can be determined from the relationship between 

the received signal and the pilot information. Pilot-based signals are used in both LS and MMSE 

methods. Consider the received OFDM signal Y shown as:

.Y H X Z= + 	 (4)
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Fig.2. LSTM architecture. 

respectively. Although the MMSE estimator takes the impact of Gaussian noise on the CSI 

performance into account and also uses the second-order statistics of the channel, its computing 

complexity is significantly more than that of the LS approach. 

III. LSTMP BASED CHANNEL ESTIMATION 

A. LSTM network 

In Recurrent neural networks (RNNs), the feedback of the hidden layer enters both the output and 

the hidden layer of the next time step, thus affecting the weights of the next time step. RNNs differ 

from other multi-layer neural networks in that they have the concept of time sequence, which makes 

the current time step data have a direct impact on the next time step data. The corresponding number 

of input and output layers can be adjusted considering the time step. The learning rate, α, can also be 

tuned. This parameter varies with the loss function in order to prevent the feedback from decaying too 

fast with the gradient and missing the minimum convergence value. The momentum impulse which 

varies with α (inverse relationship) can also be tuned to avoid local optima. RNNs, however, are not 

able to address the vanishing gradient issue. The LSTM neural network can potentially solve the 

above problems. Fig. 2 (above) shows the structure of an LSTM memory cell. The LSTM owns the 

same structure as that of the RNN, benefitting from an additional unit called a memory cell. The 

memory cell of LSTM can store and access information, so LSTM can solve the problem of gradient 

disappearance. Memory cell consists of a single unit and three gates: input, output and forget gate 

[30]. The three gates represent the information gate. They control the transmission of the information  
 

Fig. 2.  LSTM architecture

where X, H, and Z are the transmitted signal, the channel matrix and the AWGN noise in 

frequency domain, respectively. The least-square (LS) estimation method finds the channel by 

deploying the information of the pilots represented as:

1
LSH X Y−=


	 (5)

where H denotes the LS estimated of channel. As a result, one of the main goals of the MMSE 

estimator is to minimize the mean square error between the estimated channel information and 

the actual channel information. The objective function of this function can be described as the 

following:
2

arg min { }MMSE HH E H H= −
 

	
(6)

The closed-form formula is also given as follows:
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The closed-form formula is also given as follows: 
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where R[.], calculated according to [29], shows the auto-covariance matrix between the two channel 
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2 and 𝑋𝑋𝐻𝐻denote the auto-covariance of H, noise-variance and conjugate transpose of X, 

respectively. Although the MMSE estimator takes the impact of Gaussian noise on the CSI performance 

into account and also uses the second-order statistics of the channel, its computing complexity is 

significantly more than that of the LS approach. 

III. III. LSTMP BASED CHANNEL ESTIMATION 

A. A. LSTM network 

In Recurrent neural networks (RNNs), the feedback of the hidden layer enters both the output and the 

hidden layer of the next time step, thus affecting the weights of the next time step. RNNs differ from 

other multi-layer neural networks in that they have the concept of time sequence, which makes the 

current time step data have a direct impact on the next time step data. The corresponding number of 

input and output layers can be adjusted considering the time step. The learning rate, α, can also be tuned. 

This parameter varies with the loss function in order to prevent the feedback from decaying too fast 

with the gradient and missing the minimum convergence value. The momentum impulse which varies 

with α (inverse relationship) can also be tuned to avoid local optima. RNNs, however, are not able to 

address the vanishing gradient issue. The LSTM neural network can potentially solve the above 

problems. Fig. 2 (above) shows the structure of an LSTM memory cell. The LSTM owns the same 

	 (7)

where R[.], calculated according to [29], shows the auto-covariance matrix between the 

two channel vectors.   and denote the auto-covariance of H, noise-variance 

and conjugate transpose of X, respectively. Although the MMSE estimator takes the impact of 

Gaussian noise on the CSI performance into account and also uses the second-order statistics of 

the channel, its computing complexity is significantly more than that of the LS approach.
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III.	 LSTMP BASED CHANNEL ESTIMATION
A. LSTM network

In Recurrent neural networks (RNNs), the feedback of the hidden layer enters both the output 

and the hidden layer of the next time step, thus affecting the weights of the next time step. RNNs 

differ from other multi-layer neural networks in that they have the concept of time sequence, 

which makes the current time step data have a direct impact on the next time step data. The 

corresponding number of input and output layers can be adjusted considering the time step. The 

learning rate, α, can also be tuned. This parameter varies with the loss function in order to prevent 

the feedback from decaying too fast with the gradient and missing the minimum convergence 

value. The momentum impulse which varies with α (inverse relationship) can also be tuned to avoid 

local optima. RNNs, however, are not able to address the vanishing gradient issue. The LSTM 

neural network can potentially solve the above problems. Fig. 2 (above) shows the structure of an 

LSTM memory cell. The LSTM owns the same structure as that of the RNN, benefitting from an 

additional unit called a memory cell. The memory cell of LSTM can store and access information, 

so LSTM can solve the problem of gradient disappearance. Memory cell consists of a single unit 

and three gates: input, output and forget gate [30]. The three gates represent the information gate. 

They control the transmission of the information of the neurons and the information is distributed 

among the current and the next neurons. The three gates have their own activation functions 

which can be controlled multiplication [31].

We assume that the input of LSTM at time t  includes input layer tx , hidden layer 1th − , which 

is calculated by the previous unit and memory cell 1tc − . The output of the LSTM at time t includes 

the hidden layer th which is calculated by the current unit and memory cell tc . The output of the 

LSTM is then calculated as follows:

( )1t i t ih t ii x h bσ ϕ ϕ −= + + 	 (8)

( )1t o t oh t oo x h bσ ϕ ϕ −= + + 	 (9)

( )1t t t fh t ff x h bσ ϕ ϕ −= + +
	

 (10)

where ti is the input gate at time t, to  is the output gate at time t, tf  is the forget gate at 

moment t. ϕ  and b  represent weight matrices and the bias. To calculate the memory cell tc  the 

equations are as follows:
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where in  and on are the dimensions of the input and the output and cn  is the number of memory 

cells. As cn  increases, LSTMN  grows squarely accordingly. Hence achieving high accuracy 
demands a greater number of memory cells which means higher implementation costs, however 
a smaller cell number offers a lower recognition rate.

B. LSTMP network

Long Short-Term Memory Projection (LSTMP) is a variant of LSTM which can further optimize 

the speed and performance of LSTM by the addition of a projection layer [32]. Moreover, the 

technique determines the relationship governing the time steps in time series and the sequence 

data using projected learnable weights to compress the network. The projected layer is a type of 

deep learning layer which enables compression by reducing the number of learnable parameters 

stored, reducing the memory needs and also providing similarly strong prediction accuracy. 

Reducing the number of the parameters to be learned by the projection of an LSTM layer rather 

than reducing the number of hidden units of the LSTM layer maintains the output size of the layer 

and, in turn, the size of the downstream layers, which can result in improved prediction accuracy.
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As shown in Fig. 3, the learning procedure of LSTMP begins with a set of input sequences x 

and finally outputs a set of y. the amount of information stored between the previous moment in 

time and the current state to set output gate to  can be set by using the input gate ti . iϕ , irϕ  and 

b  represent the weight matrix from the input gate, weight matrix from the input to the projection 

layer and bias vector. The equations are as follows: 

( )t i t ir t ii x h bσ ϕ ϕ= + + 	  (14)

( )t o t or t oo x h bσ ϕ ϕ= + + 	  (15)

( )1t f t fr t ff x h bσ ϕ ϕ −= + +
	  (16)

Thus, adding a projection layer to the LSTM architecture, and after passing this layer, th  

produces a matrix called tr . When a projection layer is added to the LSTM architecture, the 
number of parameters in the neural network is [32]:

( )3* * * 3*LSTMP i c r c oN n n n n n= + + 	  (17)

where ( )3* * * 3*LSTMP i c r c oN n n n n n= + + is the dimension of the projection matrix. The ratio c

r

n
n

 can also be modified to 

reduce the computational complexity, if 3* 4*c rn n> , LSTMP can speed up the training model. 

Moreover, the LSTMP can converge faster to ensure the convergence of the model. Accordingly, 

in this work an architecture named LSTMP is proposed, which can not only improve the accuracy, 

but also effectively reduce the computational complexity and implementation cost.

C. LSTMP-based data extraction algorithm

With DL, the results of the prediction are derived at the output layer via linear and nonlinear 

operations at numerous hidden layers, as in the classical neural network model. With its outstanding 

learning and representation capabilities, it excels at handling highly complex and nonlinear 

situations. Two steps comprise DNN’s learning process: I) offline training neural network and 

II) online testing prediction. In the testing stage, the channels can be dynamically tracked by the 

DNN by only knowing the pilot data, and then the transmitted symbols are detected.

The network model must be first trained in three steps before it can be used to recover data 

effectively. The first step is to determine the input data samples. In the Second step, the gradient 

descent technique is used to determine the partial derivative of the cost utility which contains the 

output and the actual values, to reduce the error between these two values. In the third step, the 

validation set must be used to manually set parameters such as the number of neurons at each 

layer and the number of hidden layers. For the offline training stage, the learning network is 

trained by deploying a large amount of standard time-variant and time-invariant coefficients in 
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Table 1.  System parameter

Parameter Characteristic

Input data size 256

LSTMP layer hidden units 50

Error function Crossentropyex

Minibatch size 1000

Optimization techniques RMSprop

Learning rate 0.01

Activation function Tanh

channel matrix which are collected by the Rayleigh fading channel model. In Fig. 3, a projection 

network defined as ( )F x , which is the composition of N  functions, is shown as:

( ) ( )( )( )1 1... ...N NF x f f f x−=
	

(18)

The ith neuron’s weight in relation to the lth layer is the operation 1 Pr: l la aojection
ilf R R− → which can be used to 

define a mapping from a layer to its projected output represented as:

1 Pr: l la aojection
ilf R R− → 	 (19)

The projection operation can be expressed as the outer product of eigenvectors:

1

lb
T

p p
v

P v v
=

=∑
	

(20)

where ib  is the observation index and pv is the eigenvectors of the neural covariance matrix. 

The network input vector is shown as: 

( )Projection
1l il lcx P f P x−→ 	 (21)

where 1la N− ∈  is the dimension of the domain for 1 Pr: l la aojection
ilf R R− → and 0ax R∈  is the input of the network. 

In the LSTMP model, considering the governing relationships, the current output is based on 

prior computations. Thus, it can learn the relationship between the time series sequences. The 

LSTMP model contains six layers: a sequence input layer, LSTM hidden layer, a projection layer, 

a fully connected layer, a SoftMax layer, and a classification layer. The LSTM hidden layer is 

implemented with 50 hidden units. The fully connected layer is applied to prepare the sequence 

and time-series data for classification, where four classes are considered corresponding to the 4 

phases available in QPSK modulation, followed by a SoftMax layer and a classification layer. As 

part of this study, we examine the end-to-end performance of the receiver by implicitly estimating 

the channel parameters and then determining the transmitted message from the received signal by 

using pilot information. 
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Table 2.  OFDM parameters

Parameter Characteristic

OFDM subcarriers 64

Pilot numbers 8, 64

Path numbers 5

Modulation type QPSK

Guard interval Cyclic prefix

Cyclic prefix length 16

DFT size 64

Channel model Rayleigh fading
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B. An analysis of performance versus SNR  

In this section, the performance of the proposed estimator is compared to the conventional LS and 

MMSE estimators. Furthermore, the results are compared with those obtained from the LSTM 

estimator in [12] and the 1-D CNN model used in [11]. Each model is examined in the same channel 

under the same conditions. It is realized that the accuracy of the estimation is directly proportional to 

the number of pilots, but that an increase in the number of pilots will decrease the efficiency of the 

transmissions in terms of channel utilization. In order to determine the performance of the five 

estimators, they are tested on 8 and 64 pilots. The least accurate estimation method, LS, uses the pilot 

information location to obtain the information on the non-pilot location through interpolation.  
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IV.	 SIMULATION AND PERFORMANCE ANALYSIS

In this section, a series of experiments conducted in order to demonstrate the effectiveness of the 

DL-LSTMP channel estimator under both time-variant and time-invariant channels are presented. 

Conseq  uently, the Symbol Error Rate (SER) is compared with several other estimations for 

different SNRs. Table 1 contains the corresponding simulation parameters for DL-based channel 

estimator. The OFDM system parameters are shown in Table 2. 
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Fig. 6 shows the performance of the proposed estimators under time-invariant Rayleigh fading 

channel using 64 pilots. As shown in the figure, in the case 64 pilots are deployed, the MMSE 

estimator offers the best performance since it uses channel statistics of the second order. LSTMP also 

demonstrates the best performance among the DL-based models. 

Fig. 7 shows the performance in terms of SER against SNR when 8 pilots are used in a time-

invariant channel. It is shown that in the case 8 pilots are used, all DL models outperform the two 

non-DL models (MMSE and LS). As illustrated in Fig. 7, the LSTMP estimator outperforms MMSE 

estimators by 8 to 10 dB. 

C. SER performance versus data size 

 The purpose of this section is to examine the effect of the number of training data samples on 

LSTMP-based estimator. In this estimator, one of the most important factors is the size of the training 

data samples, which can vary regarding the complexity, time, and application. Figs. 10 and 11 

compare the SER performance of DL-based estimation methods versus the number of training sample 

under Rayleigh fading channels with the SNR being set to 15dB in testing stages. As a result, 

increasing the number of training samples improves the accuracy of our model and the performance 

remains almost unchanged when the number of training samples exceeds 100000 samples. Increasing 

the number of training samples to more than 100000 highlights that the variance in the data sample 

has exceeded the capacity of the configuration of the chosen model (number of layers and nodes); 

This happens when the validation accuracy remains constant at 97.5%. Essentially, increasing the 

number of training samples will result in a reduction in SER, but it will also increase the complexity 

of the algorithm. It is evident that the LSTMP-based estimator significantly outperforms the CNN  
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A. The accuracy and the loss graph

Firstly, the accuracy and loss graph of the two models, the LSTMP and the 1-DCNN, are given 

in Figs. 4 and 5. As is shown in Fig. 4, the accuracy of LSTMP is 100% after 100 epochs which 

is higher than the accuracy of 1-DCNN. Besides, this result shows that LSTMP takes shorter to 

convergence when compared with 1-DCNN. 

B. An analysis of performance versus SNR 

In this section, the performance of the proposed estimator is compared to the conventional LS 

and MMSE estimators. Furthermore, the results are compared with those obtained from the 

LSTM estimator in [12] and the 1-D CNN model used in [11]. Each model is examined in the 

same channel under the same conditions. It is realized that the accuracy of the estimation is 

directly proportional to the number of pilots, but that an increase in the number of pilots will 

decrease the efficiency of the transmissions in terms of channel utilization. In order to determine 

the performance of the five estimators, they are tested on 8 and 64 pilots. The least accurate 

estimation method, LS, uses the pilot information location to obtain the information on the non-

pilot location through interpolation. 

Fig. 6 shows the performance of the proposed estimators under time-invariant Rayleigh fading 

channel using 64 pilots. As shown in the figure, in the case 64 pilots are deployed, the MMSE 

estimator offers the best performance since it uses channel statistics of the second order. LSTMP 

also demonstrates the best performance among the DL-based models.
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Fig. 10. Effect of training size in time-variant channel for LSTMP model. 

 
estimator due to deploying a projected layer. Additionally, when the network is trained in different 

SNR values, which means more kind of data type, the model performs better than the case where a 

single SNR value is used. 

Figs. 8 and 9 compare the performance of LSTMP with LS and MMSE in time-variant Rayleigh 

fading channels when 8 and 64 pilots are used. For high numbers of pilots, as depicted in Fig. 8, 

LSTMP outperforms the LS, LSTM and 1-D CNN estimators by 2 to 6 dB. Furthermore, the 

introduced estimator outperforms the MMSE estimator at SNR values ranging from 0 to 21 dB which 

proves that MMSE has better performance at high SNR levels. 

In Fig. 9, it is observed that when the number of pilots is reduced to 8, LSTMP outperforms other 

estimators in terms of SER. The spectral efficiency in this case is obviously higher than the case 

where 64 pilots are used. 

Fig. 9.  SER curves in time-variant multipath channel with 8

Fig. 7 shows the performance in terms of SER against SNR when 8 pilots are used in a time-

invariant channel. It is shown that in the case 8 pilots are used, all DL models outperform the 

two non-DL models (MMSE and LS). As illustrated in Fig. 7, the LSTMP estimator outperforms 

MMSE estimators by 8 to 10 dB.

C. SER performance versus data size

The purpose of this section is to examine the effect of the number of training data samples on 

LSTMP-based estimator. In this estimator, one of the most important factors is the size of the 

training data samples, which can vary regarding the complexity, time, and application. Figs. 

10 and 11 compare the SER performance of DL-based estimation methods versus the number 

of training sample under Rayleigh fading channels with the SNR being set to 15dB in testing 

stages. As a result, increasing the number of training samples improves the accuracy of our model 

and the performance remains almost unchanged when the number of training samples exceeds 

100000 samples. Increasing the number of training samples to more than 100000 highlights that 

the variance in the data sample has exceeded the capacity of the configuration of the chosen 

model (number of layers and nodes); This happens when the validation accuracy remains constant 

at 97.5%. Essentially, increasing the number of training samples will result in a reduction in 

SER, but it will also increase the complexity of the algorithm. It is evident that the LSTMP-

based estimator significantly outperforms the CNN estimator due to deploying a projected layer.  
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SNR values, which means more kind of data type, the model performs better than the case where a 

single SNR value is used. 

Figs. 8 and 9 compare the performance of LSTMP with LS and MMSE in time-variant Rayleigh 

fading channels when 8 and 64 pilots are used. For high numbers of pilots, as depicted in Fig. 8, 

LSTMP outperforms the LS, LSTM and 1-D CNN estimators by 2 to 6 dB. Furthermore, the 

introduced estimator outperforms the MMSE estimator at SNR values ranging from 0 to 21 dB which 

proves that MMSE has better performance at high SNR levels. 
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where 64 pilots are used. 

Fig. 10.  Effect of training size in time-variant channel for LSTMP model

Additionally, when the network is trained in different SNR values, which means more kind of data 

type, the model performs better than the case where a single SNR value is used.

Figs. 8 and 9 compare the performance of LSTMP with LS and MMSE in time-variant Rayleigh 

fading channels when 8 and 64 pilots are used. For high numbers of pilots, as depicted in Fig. 

8, LSTMP outperforms the LS, LSTM and 1-D CNN estimators by 2 to 6 dB. Furthermore, the 

introduced estimator outperforms the MMSE estimator at SNR values ranging from 0 to 21 dB 

which proves that MMSE has better performance at high SNR levels.

In Fig. 9, it is observed that when the number of pilots is reduced to 8, LSTMP outperforms 

other estimators in terms of SER. The spectral efficiency in this case is obviously higher than the 

case where 64 pilots are used.

D. Complexity analysis

Tables 3,4 compare the complexity of different models, including the calculation of the runtime 

of the program and also the number of trainable parameters in DL-based models. 

To measure the computation time of DL-based models, the training and testing time are studied 

separately. In three types of channels, DL model is firstly trained offline (during one single time 

with typical parameters) and then deployed in online testing. In Table 3, the elapsed time of each 

model is presented (normalized to LS runtime). To ensure a fair comparison, the models are also 

executed in MATLAB on the same computer. Since using recurrent connection in LSTM and 

LSTMP, it is observed that the runtime of training the CNN model is half of that of the LSTM 

training runtime. It is observed that the training stage takes longer than the testing stage; However, 
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Fig. 11. Effect of training size effect in time-variant channel for CNN model. 

D. Complexity analysis 

Tables 3,4 compare the complexity of different models, including the calculation of the runtime of 

the program and also the number of trainable parameters in DL-based models.  

To measure the computation time of DL-based models, the training and testing time are studied 

separately. In three types of channels, DL model is firstly trained offline (during one single time with 

typical parameters) and then deployed in online testing. In Table 3, the elapsed time of each model is 

presented (normalized to LS runtime). To ensure a fair comparison, the models are also executed in 

MATLAB on the same computer. Since using recurrent connection in LSTM and LSTMP, it is 

observed that the runtime of training the CNN model is half of that of the LSTM training runtime. It is 

observed that the training stage takes longer than the testing stage; However, the models are trained 

offline only once and can be used in the online stage for several times. It is noticed that CNN model 

shows much faster convergence in terms of validation accuracy and has lower complexity than LSTM 

and LSTMP. Also, DL model’s testing times are quite similar but much lower than LS and MMSE. 

According to Table 4, LSTMP has the most accurate detection of all DL models with a smaller 

number of parameters, 65000, which indicates that the high number of trainable parameters will affect 

the accuracy of the LSTM model. As a result, projection layer allows for a more efficient internal 

representation of nodes information. This representation of functional equivalence allows networks 

with a projection layer to harness the benefits of reverse-complement data augmentation without 

paying a price in terms of representational complexity. Although CNN has a smaller number of 

parameters than LSTMP, LSTMP validation accuracy is higher than CNN. 

From these results, it can be seen that the computational complexity of the proposed DL-based 

algorithm in online processing is lower than that of the conventional LMMSE algorithm and slightly 

higher than that of the LS algorithm. For the proposed DL-based algorithm, the neural networks only  
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the models are trained offline only once and can be used in the online stage for several times. It is 

noticed that CNN model shows much faster convergence in terms of validation accuracy and has 

lower complexity than LSTM and LSTMP. Also, DL model’s testing times are quite similar but 

much lower than LS and MMSE. According to Table 4, LSTMP has the most accurate detection of 

all DL models with a smaller number of parameters, 65000, which indicates that the high number 

of trainable parameters will affect the accuracy of the LSTM model. As a result, projection layer 

allows for a more efficient internal representation of nodes information. This representation of 

functional equivalence allows networks with a projection layer to harness the benefits of reverse-

complement data augmentation without paying a price in terms of representational complexity. 

Although CNN has a smaller number of parameters than LSTMP, LSTMP validation accuracy is 

higher than CNN.

From these results, it can be seen that the computational complexity of the proposed DL-based 

algorithm in online processing is lower than that of the conventional LMMSE algorithm and slightly 

higher than that of the LS algorithm. For the proposed DL-based algorithm, the neural networks 

only require matrix multiplication and addition, and there is no matrix inversion operation, thus 

its online complexity is much lower than that of the conventional LMMSE algorithm. Moreover, 

the neural networks can be implemented in parallel, therefore the proposed method can reduce 

the runtime of the algorithm. For the online implementation phase, the network has been trained 

and used directly for channel estimation, thus the complexity is low. For the case of time-variant 

channels, we can rely on the previously trained networks and fine-tune the models in the network 

based on existing data, which greatly reduces the training complexity. Overall, we believe that 

the complexity is within an acceptable range, and the great merit of the proposed algorithm is that
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Table 3.  Elapsed time for different estimation methods

Estimator Elapsed time

LS T

MMSE 5.4T

LSTM 0.49T

1-DCNN 0.44T

LSTMP 0.45T

Table 4.  Complexity comparison for DL models

DL Model Parameters Accuracy

LSTM 143K 97.88

1-DCNN 49.6K 98.51

LSTMP 65K 98.87

it can obtain a much better system performance than that of the conventional channel estimation 

algorithms under reasonable computational complexity.

V. Conclusion

In this paper, different DL-based estimation algorithms for time-varying Rayleigh channels 

were discussed. We also deployed and analyzed the LSTMP estimator to further improve the 

performance of the DL-based estimators. The proposed estimator shows significant efficiency in 

high mobility, time-variant channels. Our DL model is trained offline, and then employed online 

in a communication system to track the channel statistics. Numerical experiments demonstrate 

that the LSTMP-based estimator outperforms the other discussed estimators in terms of both 

efficiency and complexity. It was shown that in the case the number of available pilots is limited, 

the DL models outperform the non-DL models (MMSE and LS). Additionally, it was shown that 

among the DL-based models, LSTMP outperforms the 1-DCNN and LSTM model (by 3 and 4 dB 

for a 0.01 SER with 8 pilots). Our approach could be a proper candidate when the channel model 

is unknown or difficult to be modelled analytically, a case commonly faced in high mobility 

vehicular communications. Additionally, the model has the potential to improve the performance 

of practical wireless communication systems such as 5G and beyond as a future work. Further 

studies shall be conducted to find and analyze the proper method for channel estimation when 

there are fewer (and ultimately no) pilot signals available which is the case in blind channel 

estimation. 
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