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Abstract: Dual-band absorbers using identical shaped graphene doped lattice, with high 

absorbance coefficients are investigated in this paper. A dynamically tunable dual-band terahertz 

metamaterial absorber is proposed based on a hybrid graphene-doped frequency selective surface 

(FSS) structure. The unit cell incorporates concentric square graphene ring resonators and a 

planar graphene sheet sandwiched between dielectric layers, supported by a metallic backing. 

These resonators are responsible for the resonance effect and enable dual-band operation. By 

adjusting the chemical potential of graphene through external gate voltage, the absorption 

peaks can be dynamically tuned, demonstrating strong spectral flexibility. Simulation results 

show a maximum absorption of 99.63% at 32.42 THz. Additionally, the impact of different 

dielectric substrates on the tunability and bandwidth separation is studied, revealing further 

structural reconfigurability. The proposed absorber also maintains high absorption efficiency 

under oblique incidence, indicating robust angular stability. These features make the structure 

a strong candidate for advanced THz sensing and stealth applications. 

Index Terms: Graphene Doped, Ring Resonator, Frequency Selective Surface, Terahertz 

Metasurfaces, Absorption Coefficient, Tunable Absorber. 
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I.  INTRODUCTION 

Photonics comes from “photon” which is everything related to light including generation, 

amplification, transmission, absorption, modulation, and detection of light [1-5]. Photonic crystals 

[6-9], plasmonics [10-12], and graphene-based structures [13-16] are commonly employed as 

optic materials at THz frequencies.

The energy dispersion diagram of graphene is without a band gap and just like a conductor. 

Graphenes conductivity, in the absence of electromagnetic bias, is simply a scalar value. Therefore, 

under static electromagnetic conditions, graphene’s conductivity can be represented by a tensor. 

Applying bias to graphene results in gyro-tropic and nonreciprocal characteristics [17-22].

As a result, the conductivity of graphene displays nonisotropic and is a complex number, with 

both real and imaginary components varying depending on frequency [23-25]. Graphene periodic 

structures can be assumed as 2D metasurfaces that have the ability to diffraction of incident 

waves. The conductivity of graphene material is interdependent on the chemical potential, and can 

be modified with an external bias voltage. Since, these structures have many applications in optic 

lenses, antennas, phase shifters, and absorbers [26, 27]. Only a singular graphene sheet displays 

an absorbing ability of approximately 2.3%. However, a doped graphene film demonstrates full 

absorbance. Consequently, various configurations of graphene patches and slotted array sheets 

are utilized in absorber designs at THz frequencies [28].

Graphene Frequency Selective Surfaces (FSS) consist of an infinite periodic array of patches 

or apertures on a dielectric substrate, and can be used as THz absorbers. Electromagnetic wave 

absorbers are being used to prevent the visibility of objects and minimize interferences. The 

classification of absorbers as resonant or broadband depends on the intended applications. Various 

types of resonant absorbers include single, dual, and multi-band absorbers designed for a range 

of frequencies, from microwaves to optical applications. Graphene FSS metasurfaces are used 

for THz applications with narrow bandwidth or broadband absorption [29-34]. In this paper, a 

novel THz dual-band absorber with a simple unit cell of FSS structure is presented. Different gate 

voltages changed the chemical potential of graphene, resulting in varied absorption frequencies. 

Furthermore, various substrate permittivity variations impact absorption frequencies, examined 

in this study. 

In [35], a single-band absorber based on graphene metamaterial presented with excellent 

absorption of 99.99% at 7.628 THz. A quad-band perfect absorber is introduced in [36]. At four 

separate frequencies, 2.7 THz, 3.19 THz, 3.99 THz, and 4.46 THz, absorptions reaching an average 

of 99.43% can be attained. In [37] A novel absorber design using a single graphene circular ring 

on dielectric spacer unit cells placed on a continuous metallic film, was suggested for achieving 
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absorption in both single and dual bands. The average absorption is 99% provided at 210.2 THz, 

227.3 THz, 297.7 THz, and 337.4 THz.

In this research, graphene layer absorption characteristics are taken into account for getting 

better absorption. In other words, the FSS absorbers, which consist of periodic multilayer unit 

cells, are specified in such a way that the absorption characteristics are enhanced. Unit cells 

consist of identical graphene patches on the substrate with a continuous graphene layer with an 

entirely metal layer placed at the bottom to increase the absorption. Unique initial properties of 

graphene influenced absorber quality, as variations in the chemical potential of the graphene layer 

affected the absorption spectrum.

II.  GRAPHENE NANOPARTICLES DESIGN

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad 

frequency range by shifting the electronic Fermi level via chemical or electronic doping, 

temperature T, and frequency of incident wave. 
The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo 

expressed by Equations 1, 2 [38, 39].
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Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

	 (1)

Journal of Communication Engineering, Vol. x, No. x, January-June 2018 3 
 
 
 

         
                                                         (a)                                                    (b) 

 

Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

	 (2)

Where 

Journal of Communication Engineering, Vol. x, No. x, January-June 2018 3 
 
 
 

         
                                                         (a)                                                    (b) 

 

Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

 and 

Journal of Communication Engineering, Vol. x, No. x, January-June 2018 3 
 
 
 

         
                                                         (a)                                                    (b) 

 

Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

, 

Journal of Communication Engineering, Vol. x, No. x, January-June 2018 3 
 
 
 

         
                                                         (a)                                                    (b) 

 

Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

 is Boltzmann’s constant, 

Journal of Communication Engineering, Vol. x, No. x, January-June 2018 3 
 
 
 

         
                                                         (a)                                                    (b) 

 

Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

 is the chemical potential, ℏ 

is the reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping 

parameter.

The density of carriers, 

Journal of Communication Engineering, Vol. x, No. x, January-June 2018 3 
 
 
 

         
                                                         (a)                                                    (b) 

 

Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 

 
�� = ���

�   ����� ����������� �+ ���� ����������� �	�                                                                        (1)                   

  

�� = ���
��

��
� �1−

����
���� −

���
� ��� |������|

|������|
                                                                                 (2) 

 
Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

, is controlled by changing the gate voltage between the graphene 

layer and the substrate.

The proposed absorber consists of multi-layered unit cells, including two graphene square 

rings on top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to 

increase the absorption. Additionally, a metal film sheet was placed on the bottom of the structure, 

as shown in Fig. 1. 

The structure is optimized on a 400 nm dielectric layer with εr = 12 (dielectric 2). Another 

dielectric layer with εr = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 
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Fig. 1.  Unit cell of proposed dual-band THz absorber. a top view of the graphene particles, b cross-section  
of the absorber layers 

 

II. GRAPHENE NANOPARTICLES DESIGN 

The Graphene structure consists of a one layer of carbon atoms organized in a regular honeycomb 

lattice structure. In this material, a complex conductivity can be continuously tuned in a broad frequency 

range by shifting the electronic Fermi level via chemical or electronic doping, temperature T, and 

frequency of incident wave.  

The real, σr, and imaginary parts of the graphene conductivity, σi, are calculated from Kubo expressed 

by Equations 1, 2 [38, 39]. 
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Where	�� = ��

�� and � = �1 + �����
�������, 	�� is Boltzmann’s constant, �� is the chemical potential, ℏ is the 

reduced Plank’s constant, ω is the angular frequency, and T is the temperature hopping parameter. 

The density of carriers, ��, is controlled by changing the gate voltage between the graphene layer and 

the substrate. 

The proposed absorber consists of multi-layered unit cells, including two graphene square rings on 

top of the dielectric. A planar graphene sheet was placed on another dielectric substrate to increase the 

absorption. Additionally, a metal film sheet was placed on the bottom of the structure, as shown in Fig. 

1.  

   The structure is optimized on a 400 nm dielectric layer with �� = 12 (dielectric 2). Another dielectric 

layer with �� = 2  and 10 nm thickness is used to separate two graphene layers (dielectric 1) 

independently. On the top layer, there are two graphene square rings in each unit cell. The width of  

, on the performance of the designed absorber, was studied. 

After that, the absorption of the proposed structure was evaluated based on the permittivity of the 

graphene substrate. Eventually, the absorbers’ behavior in different incident angles, was examined.
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A.  GRAPHENE CHEMICAL POTENTIAL EFFECT

The absorption coefficient of the proposed structure as a function of the frequency is presented in 

Fig. 2. It illustrates a dual-band phenomenon in a normally plane wave excitation through three 

different types of graphene with chemical potential equal to 400 meV, 500 meV, and 600 meV, 

respectively. The optimization procedure as well as simulated results were performed by full-

wave CST Microwave Studio. Therefore, the selected chemical potential range of 0.4–0.6 eV 

not only represents a practically achievable tuning interval based on typical gate-voltage biasing 

in graphene-based devices, but also provides effective modulation of the absorption peaks, as 

demonstrated by the simulation results in Fig. 2. Changing the chemical potential of graphene 

leads to altering the absorption spectrum, as shown in Fig. 3. By increasing this factor, the 

absorption frequency is shifted to the higher frequencies with a better absorption rate. The best 

absorption is achieved upon 
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Fig. 3.  The reflection and absorption of the incident wave for different chemical potential values, a μc = 400 mV, b μc = 500 
mV, c μc = 600 mV 
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simulation results in Fig. 2. Changing the chemical potential of graphene leads to altering the absorption 

spectrum, as shown in Fig. 3. By increasing this factor, the absorption frequency is shifted to the higher 

frequencies with a better absorption rate. The best absorption is achieved upon = 600 . Fig. 3 

illustrates the center frequency variations for different values of chemical potential. 

. Fig. 3 illustrates the center frequency variations for 

different values of chemical potential.

It is evident from Fig. 3 that there is the existence of dual-band absorbers in all three designs. 
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Fig. 4.  Absorption versus incident angle, a Frequency dependence, b Incident angle dependence 
 

It is evident from Fig. 3 that there is the existence of dual-band absorbers in all three designs. With 

= 400 , the absorption factor is nearly 50% and 78% at center frequencies equal to 13.9 THz 

and 14.3 THz, respectively. Increasing the  yields resonance frequency increment as well as the 

absorption coefficient. In = 500 , 97.9% absorption is achieved at 26.7 THz and 95.63% at 28 

THz, as shown in Fig. 3b. An acceptable response is achieved at 31.4 THz, absorption 99% and the 

most absorption 99.63% at 32.4 THz with = 600 . Therefore, increasing the chemical potential 

parameter exceeds more absorption factor. 

B. Incident Wave Angle Effect 

For the proposed graphene-doped absorbers, the incident electromagnetic wave is assumed to be a 

normal incident wave to the graphene lattices. To evaluate the robustness of these absorbers versus the 

incident wave angle, the second design with = 500  has been simulated with different angles 

of the incident wave as depicted in Fig. 4. The incident wave angle varied from the oblique wave ( =
0 ) to tangential wave radiation ( = 90 ). 

As displayed in Fig. 4, it is obvious that there is an existence of dual-band absorbers with fixed 

absorbance frequencies. However, the absorption peaks decrease while the incident wave deviates  
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Fig. 4.  Absorption versus incident angle, a Frequency dependence, b Incident angle dependence 
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It is evident from Fig. 3 that there is the existence of dual-band absorbers in all three designs. With 

= 400 , the absorption factor is nearly 50% and 78% at center frequencies equal to 13.9 THz 

and 14.3 THz, respectively. Increasing the  yields resonance frequency increment as well as the 

absorption coefficient. In = 500 , 97.9% absorption is achieved at 26.7 THz and 95.63% at 28 

THz, as shown in Fig. 3b. An acceptable response is achieved at 31.4 THz, absorption 99% and the 

most absorption 99.63% at 32.4 THz with = 600 . Therefore, increasing the chemical potential 

parameter exceeds more absorption factor. 

B. Incident Wave Angle Effect 

For the proposed graphene-doped absorbers, the incident electromagnetic wave is assumed to be a 

normal incident wave to the graphene lattices. To evaluate the robustness of these absorbers versus the 

incident wave angle, the second design with = 500  has been simulated with different angles 

of the incident wave as depicted in Fig. 4. The incident wave angle varied from the oblique wave ( =
0 ) to tangential wave radiation ( = 90 ). 

As displayed in Fig. 4, it is obvious that there is an existence of dual-band absorbers with fixed 
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As displayed in Fig. 4, it is obvious that there is an existence of dual-band absorbers with fixed 

absorbance frequencies. However, the absorption peaks decrease while the incident wave deviates 

from the normal emission. The best absorption achieved 97.9% at 26.7 THz in the oblique incident 

wave.

C.  SUBSTRATE ELECTRICAL CONDUCTIVITY EFFECT

The last parameter examined for the proposed structure absorption is the permittivity of the  
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Fig. 3.  The reflection and absorption of the incident wave for different chemical potential values,  
a μc = 400 mV, b μc = 500 mV, c μc = 600 mV

graphene substrate. Four different materials are compared, including polyamide, silicon dioxide, 

silicon nitride, and Graphite iron with an equal thickness of 10 nm. In Table 1, the efficiency of 

proposed dual-band graphene absorbers with 
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It is evident from Fig. 3 that there is the existence of dual-band absorbers in all three designs. With 

= 400 , the absorption factor is nearly 50% and 78% at center frequencies equal to 13.9 THz 

and 14.3 THz, respectively. Increasing the  yields resonance frequency increment as well as the 

absorption coefficient. In = 500 , 97.9% absorption is achieved at 26.7 THz and 95.63% at 28 

THz, as shown in Fig. 3b. An acceptable response is achieved at 31.4 THz, absorption 99% and the 

most absorption 99.63% at 32.4 THz with = 600 . Therefore, increasing the chemical potential 

parameter exceeds more absorption factor. 

B. Incident Wave Angle Effect 

For the proposed graphene-doped absorbers, the incident electromagnetic wave is assumed to be a 

normal incident wave to the graphene lattices. To evaluate the robustness of these absorbers versus the 

incident wave angle, the second design with = 500  has been simulated with different angles 

of the incident wave as depicted in Fig. 4. The incident wave angle varied from the oblique wave ( =
0 ) to tangential wave radiation ( = 90 ). 

As displayed in Fig. 4, it is obvious that there is an existence of dual-band absorbers with fixed 

absorbance frequencies. However, the absorption peaks decrease while the incident wave deviates  

, designed with a dielectric spacer 
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Table 1.  Performance of different dielectric spacers on the absorption spectra

Substrate
Material

Absorption 
Frequencies

Absorption 
Coefficient

Absorption 
Band-Gap Absorption Spectra

Polyamide
εr1 = 2

f1: 26.66 THz
f2: 28.03 THz

A1: 84.9%
A2: 71.63%

Δf = 1.36 THz
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Band-Gap Absorption Spectra 

Polyamide 

1 2rε =  
f1: 26.66 THz 
f2: 28.03 THz 

A1: 84.9% 
A2: 71.63% Δf = 1.36 THz 

 
 

Silicon Dioxide 

1 3.9rε =  
f1: 22.78 THz 
f2: 25.3 THz 

A1: 98.95% 
A2: 98.48% Δf = 2.52 THz 

 
 

Silicon Nitride 
1 7.15rε =  

f1:17.18 THz 
f2:37.9 THz 

A1: 98.29% 
A2: 96.12% Δf = 20.72 THz 
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Substrate
Material

Absorption 
Frequencies

Absorption 
Coefficient

Absorption 
Band-Gap Absorption Spectra

Silicon Dioxide
εr1 = 3.9

f1: 22.78 THz
f2: 25.3 THz

A1: 98.95%
A2: 98.48%

Δf = 2.52 THz
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Silicon Nitride
εr1 = 7.15

f1:17.18 THz
f2:37.9 THz

A1: 98.29%
A2: 96.12%

Δf = 20.72 THz
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Graphite
εr1 = 10.3

f1:15.52 THz
f2:41.4 THz

A1: 99.35%
A2: 97.84%

Δf = 25.88 THz
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from the normal emission. The best absorption achieved 97.9% at 26.7 THz in the oblique incident 

wave. 

 
C. Substrate Electrical Conductivity Effect 

The last parameter examined for the proposed structure absorption is the permittivity of the graphene 

substrate. Four different materials are compared, including polyamide, silicon dioxide, silicon nitride, 

and Graphite iron with an equal thickness of 10 nm. In Table I, the efficiency of proposed dual-band 

graphene absorbers with = 500 , designed with a dielectric spacer having diverse dielectric 

constants, is presented.  

   The dual-band absorption is prepared in two different THz frequencies, in all structures. The distances 

between two absorption bands and the peak frequencies are changed with various spacer materials. 

More distances between two adjacent frequencies are feasible for the increment of the substrate’s 

electrical conductivity. 

References Frequency 
(THz) 

Absorption 
Band No. 

Substrate 
εr 

Absorption Peak 
(%) 

Year 

[35] 7.628 Single-Band 8.73 99.99 2021 

[36] 2.7 - 4.6 4-Band 3.9 99.43 2021 

[37] 210.2 - 337.4 4-Band 3.9 99.98 2022 

[42] 1.59 - 5.11 5-Band 3 97.35 2020 

[43] 22.33, 27.59 2-Band 3.9 98.77 2022 

[44] 4.24 - 10.62 4-Band 3.9 97.74 2022 

[45] 0.3 - 4 3-Band 2 99.3 2023 

Proposed 31.36, 32.42 2-Band 12 99.63 - 

Table 2.  Comparison between proposed graphene absorber and previous research

References Frequency (THz) Absorption Band No. Substrate εr Absorption Peak (%) Year

[35] 7.628 Single-Band 8.73 99.99 2021

[36] 2.7 - 4.6 4-Band 3.9 99.43 2021

[37] 210.2 - 337.4 4-Band 3.9 99.98 2022

[42] 1.59 - 5.11 5-Band 3 97.35 2020
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References Frequency (THz) Absorption Band No. Substrate εr Absorption Peak (%) Year

[43] 22.33, 27.59 2-Band 3.9 98.77 2022

[44] 4.24 - 10.62 4-Band 3.9 97.74 2022

[45] 0.3 - 4 3-Band 2 99.3 2023

Proposed 31.36, 32.42 2-Band 12 99.63 -

having diverse dielectric constants, is presented. 

The dual-band absorption is prepared in two different THz frequencies, in all structures. The 

distances between two absorption bands and the peak frequencies are changed with various spacer 

materials. More distances between two adjacent frequencies are feasible for the increment of the 

substrate’s electrical conductivity.

Actually, increasing the permittivity (εr) of the graphene substrate layer, improves the absorption 

level. In Table 2, the absorber design presented is compared with some other absorbers that have 

been investigated in recent years.

The proposed dual-band terahertz absorber, exhibiting strong absorption peaks at 31.36 THz 

and 32.42 THz, with high efficiency exceeding 99%, dynamic tunability via chemical potential 

control, and angular stability, offers multiple practical applications in emerging terahertz 

technologies. One of the most promising applications lies in terahertz spectroscopic sensing, 

where many biological and chemical compounds exhibit distinct spectral signatures within the 

THz range. The presence of two sharp and tunable absorption bands enables simultaneous or 

selective detection of multiple target substances. This capability, combined with the angularly 

stable performance of the structure, supports real-time, robust biosensing and environmental 

monitoring.

Another key application area is electromagnetic stealth and signature suppression. In this 

context, the ability of the absorber to eliminate backscattered THz radiation at two critical 

frequencies makes it highly suitable for stealth coatings on UAVs, antennas, or other surfaces 

exposed to THz surveillance or radar systems. The compactness and conformal nature of the 

proposed design further support its integration in real-world stealth applications.

The structure can also serve as a spectral masking element in THz imaging systems. By 

selectively absorbing specific frequencies, it can enhance image contrast or suppress undesired 

background responses. This is particularly useful in biomedical and security imaging scenarios 

where precise spectral filtering is necessary.

Furthermore, the absorber can be applied in selective energy harvesting or THz detection 

systems. The dual-band high-Q resonance enhances energy capture at target frequencies, and the 
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tunable nature of the design makes it adaptable for use in frequency-selective detectors or self-

powered sensor modules.

Finally, the stable and repeatable spectral response of the structure qualifies it as an effective 

reference surface for calibration in THz spectroscopy and imaging setups. The dual-band response 

provides precise benchmarks for validating spectral accuracy in experimental configurations.

IV.  CONCLUSION

Dual-band absorbers with high absorbance coefficients are presented in this paper. The 

investigated structure is composed of two square graphene patches on the substrate. By increasing 

the chemical potential of the graphene surface, two absorption frequencies of the proposed 

structure are increased with a better absorption rate. The best absorption, 99.63% is achieved 

upon 
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Studio. Therefore, the selected chemical potential range of 0.4–0.6 eV not only represents a practically 

achievable tuning interval based on typical gate-voltage biasing in graphene- 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3.  The reflection and absorption of the incident wave for different chemical potential values, a μc = 400 mV, b μc = 500 
mV, c μc = 600 mV 

 

based devices, but also provides effective modulation of the absorption peaks, as demonstrated by the 

simulation results in Fig. 2. Changing the chemical potential of graphene leads to altering the absorption 

spectrum, as shown in Fig. 3. By increasing this factor, the absorption frequency is shifted to the higher 

frequencies with a better absorption rate. The best absorption is achieved upon = 600 . Fig. 3 

illustrates the center frequency variations for different values of chemical potential. 

 at 32.42 THz. The effect of the angle of incident wave on the presented 

structure with 

6                                      Sensing with Dual-band Absorber Based on Graphene Doped Lattice for Terahertz Frequencies 
 
 

 

 

 
(a) 

 

 
(b) 

Fig. 4.  Absorption versus incident angle, a Frequency dependence, b Incident angle dependence 
 

It is evident from Fig. 3 that there is the existence of dual-band absorbers in all three designs. With 

= 400 , the absorption factor is nearly 50% and 78% at center frequencies equal to 13.9 THz 

and 14.3 THz, respectively. Increasing the  yields resonance frequency increment as well as the 

absorption coefficient. In = 500 , 97.9% absorption is achieved at 26.7 THz and 95.63% at 28 

THz, as shown in Fig. 3b. An acceptable response is achieved at 31.4 THz, absorption 99% and the 

most absorption 99.63% at 32.4 THz with = 600 . Therefore, increasing the chemical potential 

parameter exceeds more absorption factor. 

B. Incident Wave Angle Effect 

For the proposed graphene-doped absorbers, the incident electromagnetic wave is assumed to be a 

normal incident wave to the graphene lattices. To evaluate the robustness of these absorbers versus the 

incident wave angle, the second design with = 500  has been simulated with different angles 

of the incident wave as depicted in Fig. 4. The incident wave angle varied from the oblique wave ( =
0 ) to tangential wave radiation ( = 90 ). 

As displayed in Fig. 4, it is obvious that there is an existence of dual-band absorbers with fixed 

absorbance frequencies. However, the absorption peaks decrease while the incident wave deviates  

 has been examined to evaluate the performance of these absorbers 

versus the incident wave angle. In this situation, the best absorption achieved 97.9%, at 26.7 THz 

in the oblique incident wave. The effect of the graphene substrate permittivity was examined. In 

all structures dual band absorption is prepared in two different THz frequencies. The distances 

between two absorption bands and the peak frequencies are changed with various spacer materials.
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