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Abstract: This paper introduces a new solution for 2-dimensional (2D) TM electromagnetic 

problems by the method of moments (MoM) in polar coordinates. The main idea is to 

reformulate a 2D problem according to addition theorem for  the zeroth-order Hankel function of 

the second kind. Recursive formulas in spatial frequency domain are derived and the scattering 

field is rewritten into inward and outward components. In this way, a 2D TM problem can be 

solved using 1D FFT in the stabilized biconjugate-gradient fast Fourier transform (BCGS-

FFT) algorithm. Because the emerging method obtains 1D FFT over a circle, there is no need 

to expand an object region by zero padding, whereas it is necessary for the conventional 

2D FFT in cartesian coordinates. Therefore, the polar coordinate approach  concludes in 

less computational burden.  Other interesting advantage is that the field on a circle outside a 

scattering object can be calculated, efficiently, using an analytical formula. This is, particularly, 

attractive in electromagnetic inverse scattering problems and microwave imaging (MI). The 

numerical examples for 2D TM problems demonstrate merits of the proposed technique in 

terms of the accuracy and computational efficiency. 

Index Terms: 2-Dimensional TM Problem, Method of Moments (MoM), Stabilized 

Biconjugate-gradient Fast Fourier Transform, Microwave Imaging. 	
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I.  INTRODUCTION 

There exist a number of algorithms to numerically obtain electromagnetic fields from Maxwell’s 

equations, among them are full-wave methods ‎[1, 2]. Such methods are iterative-oriented and each 

iteration involves the computation of integro-difference equations. The most widely used full-

wave methods are the MoM [3], the finite element method (FEM) [4], and the finite- difference 

time-domain (FDTD) method [5]. Our focus in this paper is on developing an efficient MoM to 

solve 2D TM scattering problems that can be employed in microwave imaging.

Richmond is the first person who provide MoM solutions to 2-dimensional TM [6] and TE 

[7] problems in order to obtain the scattered wave from a dielectric object. The MoM results in 

a system of linear equations with many unknowns, whose solution is computationally intensive. 

Having stability against numerical error, the conjugate gradient (CG) method is an appropriate 

iterative procedure to solve a system of linear equations. The CG needs a matrix-vector product 

(MVP) in each iteration and 2O( )N  arithmetic multiplications is required for each MVP, where 

N is the number of unknowns.  However, the convolutional nature of the electric field integral 

equation (EFIE) makes efficient implementation of the MVP using the FFT. The computational 

cost is, therefore, reduced to 2O( log )N N  and the CG becomes an efficient algorithm. Van Den 

Berg [8] and Sarkar [9] employ the conjugate gradient fast Fourier transform (CG-FFT) technique, 

in which the CG uses the FFT technique to perform the required MVP operations in each iteration. 

Su [10] solves a 2D TE problem applying CG-FFT to MoM with pulse function expansion and 

point matching. It was observed that pulse function expansion and point matching did not provide 

enough accuracy for TE problems [11] and Zwamborn and Van Den Berg overcame this difficulty 

by introducing the weak form of CG-FFT for TE problems [12]. Some efforts are, also, made to 

improve the speed and convergence of the CGFFT [13].

In continuation of CG-FFT, the biconjugate gradient FFT (BCG-FFT) method shows promising 

speed of convergency in comparison with CG-FFT ‎[14, 15]; however, in some special cases, 

BCG-FFT becomes useless and it is necessary to stabilize the answer of the algorithm in each 

iteration. Hence, avoiding the calculation of adjoint matrix, the stabilized version of BCG-FFT, 

i.e. BCGS-FFT, provides more speed and simplicity than CG-FFT and BCG-FFT in different MI 

applications ‎[16-18]. There are many papers, which have dealt with the MoM solution of the EFIE 

and the state-of-art ones can be found in [19].

Authors in ‎[20] introduce a technique in cartesian coordinates to use 1D FFT instead of 2D 

FFT to solve 2D electromagnetic problems. The idea is to decompose Green’s function of 2D 

homogeneous media and rewrite scattering fields into upward and downward components. In this 

way, the 1D FFT instead of the 2D one is employed to solve the 2D EFIE. Although such an idea 
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owns some merits, it provides no significant improvement over the use of the 2D FFT. Proceeding 

the same approach, this paper extends the idea to polar coordinates. According to addition theorem 

for the zeroth-order Hankel function of the second kind in polar system, we attempt to solve 2D 

TM problems using 1D FFT by rewriting the scattering field into inward and outward components. 

We derive new recursive formulas, in which the pre-computations can be capsulated, and solve a 

2D TM problem using 1D FFT in BCGS-FFT algorithm. Obtaining 1D FFT over a circle, there 

is no need for zero-padding and together with the use of pre-computations, the method saves 

considerable memory and time over the conventional approach. The same approach is taken in 

[21] to formulate TE and TM scattering problems for 2D conducting structures, whereas our 

approach is for 2D dielectric penetrable objects. Other interesting advantage of our approach 

is that the field on a circle outside a scattering object can be calculated, efficiently, using an 

analytical formula. This i s, particularly, attractive in electromagnetic inverse scattering problems 

and microwave imaging.

Let denote 2Dfft-MoM for the conventional approach and 1Dfft-MoM for our approach. The 

novelty of the 1Dfft-MoM can be summarized as follows:

a)	 In the 1Dfft-MoM, we obtain 1D FFT over a circle, which is periodic and, hence, there is no 

need for zero-padding, improving the computational efficiency. Several numerical examples 

indicate the computational cost for the 1Dfft-MoM is lower than that for the 2Dfft-MoM. 

Moreover, the 1Dfft-MoM needs less storage and its accuracy is comparable to that of the 

2Dfft-MoM.

b)	 After calculating the electric field inside the object region by the 2Dfft-MoM, the EFIE is, 

numerically, computed to obtain the field at any point outside the object region. That means 

the calculation of the electric field at any point outside the object region needs N complex 

multiplications, where N is the number of cells in the object region. However, with the aid of 

an analytical formula in the 1Dfft-MoM, the computational cost for one point is, nearly, on 

order of 2log (4 )N . Thus, the computational efficiency is, signifi cantly, improved in the 

calculation of the electric field outside the object region.

A state-of-art work [22] employs a deep neural network to solve 2D TM problems. Authors in 

[22] discretize the object domain in cartesian coordinates and solve the emerging linear equations 

by a trained multilayer neural network (TMNW). The number of layers is equal to the number of 

iterations and the solution at an iteration is the output of the corresponding layer of the TMNW. 

The inputs to each layer need the MVP that is obtained by the 2D FFT and therefore, the 2D zeros-

padding is required. 
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In the algorithm of [22], one can employ our approach, i.e. one can discretize the object region 

in polar coordinates and solve 2D TM problems by a TMNW. The MVP in each layer of the 

TMNW can be obtained by the use of 1D FFT. Thus, the use of our proposal in TMNW would 

improve the efficiency and accuracy in comparison to the use of the conventional 2D FFT.

It should be emphasized both 1Dfft-MoM and 2Dfft-MoM can employ the CG, BCG, BCGS 

or even TMNW to converge to the exact solution of a 2D TM problem. All four algorithms (CG, 

BCG, BCGS and TMNW) need the MVP in their iterations. The MVP is the numerical realization 

of the electric field integral equation with a given total electric field inside the object region. 

The 2Dfft-MoM evaluates the MVP in cartesian coordinates with 2D FFT, whereas 1Dfft-MoM 

performs the MVP in polar coordinates with aid of our recursive formula and the 1D FFT.

II.  2D ELECTROMAGNETIC PROBLEM 

Consider the geometry of a 2D electromagnetic scattering problem shown in Fig. 1, where 

an inhomogeneous object with spatial support of D is located in a background medium with 

the permittivity bε , conductivity bσ  and permeability bµ . The object has the spatially variable 

permittivity ( )ε r , conductivity ( )σ r , where ˆ ˆx x y y= +r , and a constant permeability bµ µ= (i.e. 

the object and the background medium are nonmagnetic). For TMz problems, the total electric 

field satisfies
2( ) ( ) ( ) ( ) ( )i s i

z z z z b zE E E E k A= + = +r r r r r 	 (1)

where ( )zE r , ( )i
zE r  and ( )s

zE r  are, respectively, z components of the total, incident and 

scattered fields. The vector potential ( )zA r  is equal to

2( ) ( , ') ( ') ', ( ) ( ) ( )z z z z
D

A g d Eψ ψ χ= =∫∫r r r r r r r r 	 (2)

in which ( )g r , ( )zψ r  and ( )χ r  are scalar Green’s function of the background medium, the induced 

source and the object function respectively. With a time dependency of e j tω , 2 2( ) ( ) 1bk kχ = −r r  
where  2 2

b b b b bk jω µ ε ω µ σ= −   and  2 2( ) ( ) ( )b bk ω µ ε ω µ σ= −r r r .
In order to solve (1), the iterative algorithms need the computation of (2) for known ( )zψ r  at 

every iteration. Let the  object domain D be embedded in a rectangle region ℜ that is discretized 

to x yM N× square cells, where xM and yN are the discretization numbers in x and y directions 

respectively. Selecting the proper testing and expansion functions and obtaining (2) by the MoM, 

Eq. (2) is converted to MVP, whose direct evaluation requires 2O( )N , where x yN M N= × , 

arithmetic operations. However, the convolutional form of (2) suggests the use of 2D FFT to 

reduce the computational cost. Denoting ( , )za m n  and ( , )z m nφ  the coefficients of the discrete  
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II. 2D ELECTROMAGNETIC PROBLEM  

Consider the geometry of a 2D electromagnetic scattering problem shown in Fig. 1, where an 

inhomogeneous object with spatial support of D is located in a background medium with the permittivity 

bε , conductivity bσ  and permeability bμ . The object has the spatially variable permittivity ( )ε r , 

conductivity ( )σ r , where ˆ ˆx x y y= +r , and a constant permeability bμ μ= (i.e. the object and the 

background medium are nonmagnetic). For TMz problems, the total electric field satisfies 
2( ) ( ) ( ) ( ) ( )i s i

z z z z b zE E E E k A= + = +r r r r r  (1) 

where ( )zE r , ( )i
zE r  and ( )s

zE r  are, respectively, z components of the total, incident and scattered 

fields. The vector potential ( )zA r  is equal to 

2( ) ( , ') ( ') ', ( ) ( ) ( )z z z z
D

A g d Eψ ψ χ= =r r r r r r r r  (2) 

in which ( )g r , ( )zψ r  and ( )χ r  are scalar Green’s function of the background medium, the induced 

source and the object function respectively. With a time dependency of e j tω , 2 2( ) ( ) 1bk kχ = −r r   

where 2 2
b b b b bk jω μ ε ω μ σ= −  and 2 2( ) ( ) ( )b bk ω μ ε ω μ σ= −r r r . 

In order to solve (1), the iterative algorithms need the computation of (2) for known ( )zψ r  at every 

iteration. Let the object domain D be embedded in a rectangle region ℜ  that is discretized to x yM N×

square cells, where xM and yN are the discretization numbers in x and y directions respectively. 

Selecting the proper testing and expansion functions and obtaining (2) by the MoM, Eq. (2) is converted 

Fig. 1. The geometry of a 2D electromagnetic problem and it's discretization along ρ and φ in polar coordinates. Fig. 1.  The geometry of a 2D electromagnetic problem  
and it’s discretization along ρ and φ in polar coordinates

version of ( )zA r  and ( )zψ r , respectively, ( , )za m n  can be written as [19, 23]

[ ] [ ]{ }1( , ) FFT FFT ( , ) FFT ( , )z za m n g m n m nφ−= 	 (3)

where ( , )g m n  is, approximately, obtained by integrating ( )g r  over circle cells, whose surfaces 

are equivalent to the square cells. It is necessary to expand embedding region ℜ with at least 

xM and yN cells in x and y directions, respectively, so as to correctly calculate ( )zA r  using the 

FFT. Therefore, ( , )g m n  and ( , )z m nφ  will have 2 2x yM N×  elements (i.e. ( , )g m n  and ( , )z m nφ  

are zero-padded). Consequently, the total number of complex multiplications for evaluating the 

discrete version of Eq. (2) with a given total electric field inside the embedding region would be 

2DFFT 28 log (4 ) 8x y x y x yN M N M N M N= + 	 (4)

where the second term at the right side of (4) accounts for the multiplication inside the curve 

brackets ({}) in (1) and obtaining the induced source ( , )z m nφ  (Eq. (2)). The dominant factor 
that determines the computational cost is the first right term of (4). We refer to the conventional 
method as 2Dfft-MoM throughout the paper.

III.  SPLITTING VECTOR POTENTIAL IN POLAR COORDINATE 

The Green’s function for 2D problems can be written as [24]

(2)
0( , ') ( ' )

4 b
jg H k=− −r r r r 	 (5)

in which (2)
0H  is z eroth-order Hankel function of the second kind. Inserting (5) into (2), the 

resultant relation in polar coordinate is given by
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(2)
0

2 2

( , ) ( ' ) ( ', ') ' ' ' ,
4

' ' 2 'cos( ')

z b z
D

jA H k d dρ ϕ ψ ρ ϕ ρ ρ ϕ

ρ ρ ρ ρ ϕ ϕ

−
= −

− = + − −

∫∫ r r

r r

	 (6)

The addition theorem for the Hankel function provides [24]

(2) ( ')

(2)
0

(2) ( ')

( ) ( ')  e , '

( ' )

( )  ( ') e , '

j n
n b n b

n
b

j n
n b n b

n

H k J k

H k

J k H k

φ φ

φ φ

ρ ρ ρ ρ

ρ ρ ρ ρ

∞
−

=−∞
∞

−

=−∞


 ≤
− = 


>


∑

∑
r r

	 (7)

where (2)
nH and nJ  are nth-order Hankel function of the second kind and nth-order Bessel 

function, respectively. Considering the circle C in Fig. 1 is within region D , one can decompose 

( , )zA ρ ϕ  on this circle to outward and inward waves out ( , )zA ρ ϕ  and in ( , )zA ρ ϕ . Hence, we have

out (2) '

out

( , ) ( )e ( ') ( ', ')e ' ' '
4

j n j n
z n b n b z

n D

jA H k J k d dϕ ϕρ ϕ ρ ρ ψ ρ ϕ ρ ρ ϕ
∞

−

=−∞

−
= ∑ ∫∫

	 (8)

where { }out ( ', ') | 'D Dρ ϕ ρ ρ= ∈ ≤ . In the same way, we have

in (2) '

in

( , ) ( )e ( ') ( ', ')e ' ' '
4

j n j n
z n b n b z

n D

jA J k H k d dϕ ϕρ ϕ ρ ρ ψ ρ ϕ ρ ρ ϕ
∞

−

=−∞

−
= ∑ ∫∫

	 (9)

in which { }in ( ', ') | 'D Dρ ϕ ρ ρ= ∈ > . The outward and inward waves are periodic in terms of 

angleϕ. The outward wave in form of Fourier series is

out out out (2) out( , ) ( , ) e , ( , ) ( )
4

j n
z z z n b n

n

jA A n A n H k Iϕρ ϕ ρ ρ ρ
∞

=−∞

−
= =∑  

	
(10)

out '

out

2
'

0
0

( ') ( ', ') e ' ' '

12 ' ( ') ( ', ') e ' '
2

j n
n n b z

D

j n
n b z

I J k d d

J k d d

ϕ

ρ
π

ϕ

ρ ψ ρ ϕ ρ ρ ϕ

π ρ ρ ψ ρ ϕ ϕ ρ
π

−

−

=

 
=  

 

∫∫

∫ ∫

	 (11)

The integral term in the bracket in (11) is the Fourier series coefficients of ( ', ')zψ ρ ϕ  in terms 

of 'ϕ . Denoting 
2

'

0

1( ', ) ( ', ')e '
2

j n
z zn d

π
ϕψ ρ ψ ρ ϕ ϕ

π
−= ∫ , we have 

	
out (2)

0

( , ) ( ) ' ( ') ( ', ) '
2z n b n b z
jA n H k J k n d

ρ
πρ ρ ρ ρ ψ ρ ρ−

= ∫  	

(12)
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Considering the embedding region ℜ, herein, is a circle surface that includes the object region 
D and has radius a, in the same way, one can derive

in in

in (2)

( , ) ( , ) e

( , ) ( ) ' ( ') ( ', ) '
2

j n
z z

n
a

z n b n b z

A A n

jA n J k H k n d

ϕ

ρ

ρ ϕ ρ

πρ ρ ρ ρ ψ ρ ρ

∞

=−∞

=

−
=

∑

∫



 

	 (13)

Let the embedding region be discretized to M ρ  rings in ρ  direction, each having the thickness 

1 2, ,..., M ρ
∆ ∆ ∆ starting from the origin. Also, let define 0

1

0 ,
L

L m
m

ρ ρ
=

= = ∆∑ as the edge rings and 

1/2 / 2 , 1i i i i M ρρ ρ− = − ∆ ≤ ≤  as the middle rings. One can rewrite the Fourier coefficients of 

outward wave in Eq. (12) at 1/2Lρ −  as

1

1 1out (2)
1/2 1/2 1/2

1

' ( ') ( ', ) '

( , ) ( )
2

' ( ') ( ', ) '

mL

n b z
m m

z L n b L L

n b z

L

J k n d
jA n H k

J k n d

ρ

ρ

ρ

ρ

ρ ρ ψ ρ ρ
πρ ρ

ρ ρ ψ ρ ρ

−

= −
− −

−

−

 
 
 
 −

=  
 
+ 

 
 

∑ ∫

∫






	

(14)

If m∆ s are enough small, the induced field does not vary, significantly, in interval [ ]1 ,m mρ ρ−  

and we may use the approximation 1 1/2( ', ) ( / 2, ) ( , )z z m m z mn n nψ ρ ψ ρ ψ ρ− −= + ∆ =   , i.e. the 

basis function is chosen as pulse function in ρ direction. Substitution of this approximation in 

(14) yields:

1

1/2
1 1out (2)

1/2 1/2 1/2

1/2

1

( , ) ' ( ') '

( , ) ( )
2

( , ) ' ( ') '

mL

zz m n b
m m

z L n b L L

z L n b

L

n J k d
jA n H k

n J k d

ρ

ρ

ρ

ρ

ψ ρ ρ ρ ρ
πρ ρ

ψ ρ ρ ρ ρ

−

−

= −
− −

−

−

−

 
 
 
 −
 
 
+ 

 
 

∑ ∫

∫



 �



	 (15)

The only term in(15), which is a function of electrical field, is 1/2( , )z m nψ ρ − . Let introduce 

the definition

1

out
1/2

1

( , ) ( , ) ' ( ') '
m

m

L

z L z m n b
m

B n n J k d
ρ

ρ
ρ ψ ρ ρ ρ ρ

−
−

=

= ∑ ∫  	
(16)

Then, (15) is given by

out (2) out
1/2 1/2 1/2( , ) ( ) ( , )

2z L n b L z L
jA n H k B nπρ ρ ρ− − −

−
=  	 (17)
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Eqs. (15) and (16) suggests a recursive formula as

1/2

1

1

out out
1/2 1 1/2

out out
1 1/2

( , ) ( , ) ( , ) ' ( ') '

( , ) ( , ) ( , ) ' ( ') '

L

L

L

L

z L z L z L n b

z L z L z L n b

B n B n n J k d

B n B n n J k d

ρ

ρ

ρ

ρ

ρ ρ ψ ρ ρ ρ ρ

ρ ρ ψ ρ ρ ρ ρ

−

−

−

− − −

− −

= +

= +

∫
∫

  

  

	 (18)

Hence, to obtain out
zB , it is enough to compute an integral term and use this integral in the 

second right term of (18) and add to out
zB  for the preceding ring. The integral term is independent 

of the object and, totally, depends on the background parameters. Consequently, this integral for 

a given background can be pre-computed regardless of the object. In this way, the computational 

complexity is reduced during the calculation of the scattered field for different objects.  Such a 

situation occurs in microwave imaging of objects. 

To implement pre-computation, integral term in (18) could be obtained, recursively, using 

Bessel equations. In this manner, we have [25]

1 1 1

1 2
2( 1)' ( ') ' ( ') ' ' ( ') '

m m m

m m m

n b n b n b
b

nJ k d J k d J k d
k

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

− − −

− −
−

= −∫ ∫ ∫ 	

(19)

To solve the first right hand term of (19), the relation (20) is employed

11 1

2 1
2( ') ' ( ') ' ( ') , 1

m m m

mm m

n b n b n b
b

J k d J k d J k n
k

ρ ρ ρ

ρρ ρ

ρ ρ ρ ρ ρ
−− −

− −= − >∫ ∫ 	

(20)

In order to proceed with the recursive relations (19) and (20), it is required to obtain the 

integral of the zeroth and first order Bessel functions, whose detail calculations are given by 

relation (A3) in Appendix. 

For inward wave, if one obtains in ( , )zA nρ at the middle of a ring 1/2 / 2L L Lρ ρ ρ−= = − ∆ , Eq. 

(13) gives following relations

1

in (2)
1/2

1

( , ) ( , ) ' ( ') '
m

m

M

z L z m n b
m L

B n n H k d
ρ

ρ
ρ ψ ρ ρ ρ ρ

−
−

= +

= ∑ ∫ 
	

(21)

and

1/2

1

in n
1/2 1/2 1/2

in in (2)
1/2 1/2

n in (2)
1 1/2

( , ) ( ) ( , )
2

( , ) ( , ) ( , ) ' ( ') '

( , ) ( , ) ( , ) ' ( ') '

L

L

L

L

i
z L n b L z L

z L z L z L n b

i
z L z L z L n b

jA n J k B n

B n B n n H k d

B n B n n H k d

ρ

ρ

ρ

ρ

πρ ρ ρ

ρ ρ ψ ρ ρ ρ ρ

ρ ρ ψ ρ ρ ρ ρ

−

+

− − −

− −

+ +

−
=

= +

= +

∫
∫

 

  

  

	 (22)
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where the integral terms in (22) can be obtained with the aid of equations

1 1 1

11 1

(2) (2)(2)
1 2

(2) (2) (2)
1 3 2

2( 1)' ( ') ' ( ') ' ' ( ') '

2( ') ' ( ') ' ( ') 2

m m m

m m m

m m m

mm m

n b b bn n
b

b b bn n n
b

nH k d H k d H k d
k

H k d H k d H k n
k

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

− − −

−− −

− −

− − −

−
= −

= − >

∫ ∫ ∫

∫ ∫ 	

(23)

Again, the integral of the zeroth and first order functions are given in Appendix. 

Now, we can merge out
1/2( , )z LB nρ −

  and in
1/2( , )z LB nρ −

  to obtain 1/2( , )z LA nρ −


out n
1/2 1/2 1/2

(2) out
1/2 1/2

in
1/2 1/2

( , ) ( , ) ( , )

( ) ( , )
2 ( ) ( , )

i
z L z L z L

n b L z L

n b L z L

A n A n A n

H k B nj
J k B n

ρ ρ ρ

ρ ρπ
ρ ρ

− − −

− −

− −

= +

 −  =  
+  

  




	

(24)

Equations (18), (22) and (24) indicate the procedure for calculating the total electric 

field ( )zE r inside the embedding region at each iteration of the proposed MoM. Denoting 

1/2( , )k
z LE nρ − as the discrete version of ( )zE r at kth iteration, the induced source 

1/2 1/2 1/2( , ) ( , ) ( , )k
z L L z Ln n E nψ ρ χ ρ ρ− − −=  and its FFT 1/2( , )z L nψ ρ −  are obtained. Afterward, 

1/2( , )z LA nρ −
  is calculated using Eqs. (18), (22) and (24) and the inverse FFT provides 

1/2( , )z LA nρ −  and we have

1 2
1/2 1/2 1/2( , ) ( , ) ( , )k i

z L z L b z LE n E n k A nρ ρ ρ+
− − −= + 	 (25)

We refer to the proposed method as the 1Dfft-MoM. 

The computation of 1/2( , )z LA nρ −
  for the entire rings 1,2,...,L M ρ=  and N ϕ spatial frequencies, 

i.e. / 2 1 / 2N n Nϕ ϕ− + ≤ ≤ , needs (7 )M Nρ ϕ×  multiplications that is due for obtaining the 

induced source 1/2( , )z L nψ ρ −  and due to the complex multiplications in Eqs. (18), (22), (24). 

Also, 22 logM N Nρ ϕ ϕ  multiplications are needed to calculate the FFT of 1/2( , )z L nψ ρ −  and 

the inverse FFT of 1/2( , )z LA nρ −
  to obtain 1/2( , )z LA nρ − . Thus, the total number of complex 

multiplications would be

1DFFT 22 log ( ) 7N M N N M Nρ ϕ ϕ ρ ϕ= + 	 (26)

for each iteration of the 1Dfft-MoM. It should be noted that obtaining 1/2( , )z LA nρ − from a 

given total electric field inside the embedding region, i.e. from 1/2( , )k
z LE nρ − , is the realization 

of the MVP.

It is worth noting that after calculating the electric field inside the embedding region by the 

2Dfft-MoM, the integral of (2) is, numerically, computed to obtain the field at any point outside 

the embedding region. That means the calculation of the electric field at any point r outside the 

object region needs x yM N× complex multiplications. However, the 1Dfft-MoM can calculate 
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scattering field out of the embedding region efficiently. There are M ρ  rings in radial division of 

polar coordination; hence, if L M ρ=  in (14), we have 

out (2)

1 1

( , ) ( ) ' ( ') ( ', ) '
2

M m

z M n b M n b z
m m

jA n H k J k n d
ρ

ρ ρ

ρ

ρ

πρ ρ ρ ρ ψ ρ ρ
= −

−
= ∑ ∫  	

(27)

for the last ring. Because ( ', )z nψ ρ  is zero for ' M ρ
ρ ρ>  in (27), the field for M ρρ ρ> , out 

of the embedding region, is given by

(2)
out out

(2)
( )( , ) ( , )

( )
n b

z z M
n b M

H kA n A n
H k ρ

ρ

ρ
ρ ρ

ρ
= 

	
(28)

Using (28), the calculation of the electric field on all N ϕ points on a circle outside the 

embedding region requires 2N ϕ complex multiplications to obtain out ( , )zA nρ  and then 

2log ( )N Nϕ ϕ  complex multiplications for inverse FFT of out ( , )zA nρ . Thus, the total computation 

would be 2log (4 )N Nϕ ϕ  and the computational cost for one point is 2log (4 )N ϕ . Comparing to 

the 2Dfft-MoM, the computational efficiency is, considerably, improved in the calculation of the 

electric field outside the embedding region. This improvement is, particularly, attractive in 2D 

electromagnetic inverse scattering problems, where, the calculation of the field on a circle outside 

the object region is required at each inversion iteration [26, 27].

IV.  NUMERICAL RESULTS

In this section, the scattering fields from various homogeneous and inhomogeneous dielectric 

cylinders will be computed to demonstrate the performance and merits of the proposed method. 

The results of 1Dfft-MoM are obtained for different cylinders, such as squares, circles and 

nonsymmetrical cylinders in different scenarios and compared with results from conventional 

2Dfft-MoM and COMSOL software. The background medium in all examples is air. 

To solve scattering problems, the stabilized biconjugate-gradient FFT (BCGS-FFT) [16] is 

used. The 2Dfft-MoM is implemented in accordance with [28] to compute vector potential ( )zA r . 

The iteration process of BCGS is terminated when the number of iterations exceed the maximum 

allowed iterations that is set to 25000, or relative residual error, Err, satisfies the criterion (29)
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particularly, attractive in 2D electromagnetic inverse scattering problems, where, the 

calculation of the field on a circle outside the object region is required at each inversion 

iteration [26, 27]. 

IV. NUMERICAL RESULTS 

In this section, the scattering fields from various homogeneous and inhomogeneous dielectric 

cylinders will be computed to demonstrate the performance and merits of the proposed method.  The 

results of 1Dfft-MoM are obtained for different cylinders, such as squares, circles and nonsymmetrical 

cylinders in different scenarios and compared with results from conventional 2Dfft-MoM and 

COMSOL software. The background medium in all examples is air.  

To solve scattering problems, the stabilized biconjugate-gradient FFT (BCGS-FFT) [16] is used. The 

2Dfft-MoM is implemented in accordance with [28] to compute vector potential ( )zA r . The iteration 

process of BCGS is terminated when the number of iterations exceed the maximum allowed iterations 

that is set to 25000, or relative residual error, Err, satisfies the criterion (29) 

4( ) 10i i
z z zErr L −= − ≤E Ε E  (29) 

where ( )zL E  is the vector calculated at different points from [ ] 2( ) ( ) ( )z z b zL E E k A= −r r r  and  

denotes the L2-norm. The incident field is a unit amplitude plane wave with z component, traveling in 

x direction. The figures illustrate the scattered fields, which are computed on circles outside object 

(embedding) region.  It is assumed that permeability bμ  is that of free-space 0μ . The discretization 

size, Δ, for 2Dfft-MoM  in x and y directions and for 1Dfft-MoM in ρ direction for all rings at 

frequency f is determined with respect to 

 min
min max max

/min ( , ) ,
10 2

r r

c fλ δ λλ
ε ε

Δ ≤ = =  (30) 

	 (29)

where ( )zL E  is the vector calculated at different points from [ ] 2( ) ( ) ( )z z b zL E E k A= −r r r  and 

denotes the L2-norm. The incident field is a unit amplitude plane wave with z component, 

traveling in x direction. The figures illustrate the scattered fields, which are computed on circles 

outside object (embedding) region. It is assumed that permeability bµ  is that of free-space 0µ . The 
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discretization size, Δ, for 2Dfft- MoM  in x and y directions and for 1Dfft-MoM in ρ direction for 

all rings at frequency f is determined with respect to

min
min max max

/min ( , ) ,
10 2

r r

c fλ δ λλ
ε ε

∆ ≤ = = 	 (30)

where max
rε  is the maximum relative permittivity in a cylinder, c and λ  are the speed of light 

and the wavelength in free space and δ  denotes the dimension of the smallest homogeneous part 

in a cylinder.

The first operating frequency is chosen f = 1200 MHz because of two reasons: 1- obtaining 

comparable results for the models given in [29] and 2- the electromagnetic wave could penetrate 

into human tissues with acceptable spatial resolution in 600-1500 MHz frequency range [30]. 

However, in order to investigate the behavior of the methods for higher frequencies, the simulation 

results are provided at 6000 MHz as well. Quantity N ϕ  in 1Dfft-MoM is 64 at 1200 MHz and 128 

at 6000 MHz for all examples.

For a convenient comparison of the performance that is in terms of accuracy and computational 

efficiency, we employ two criteria : the relative error and the efficiency gain effG . The relative 

error of computed scattering fields of 1Dfft-MoM and 2Dfft-MoM is given by [28]

exact 2 exact
z b z ze k= −E A E 	 (31)

where exact
zE  is the scattered field in form of a vector obtained at different points by COMSOL 

as the real data set. The second comparison criterion, effG , is obtained by combining the number 

of iterations, the computational complexity and the operations are needed to obtain the field 

outside the embedding region on a circle. The number of iterations for 1Dfft-MoM ( 1D
IteN ) and 

2Dfft-MoM ( 2D
IteN ) algorithms may be different in terms of stopping rule (29). The efficiency 

gain, according to (4) and (26), is, approximately, computed from

2D 1D
eff Ite 2 Ite 24 log (4 ) log ( )x y x yG N M N M N N M N Nρ ϕ ϕ≈ 	 (32)

It should be noted that due to symmetric nature of the objects in Subsections A and B, the 

scattering fields in figures 2, 3, 4 and 5 are sketched in interval [0 180] degrees for more clarification 

and distinguishment between the performances of 1Dfft-MoM and 2Dfft-MoM methods.

A.  HOMOGENEOUS SQUARE CYLINDERS 

Sharp edges are always the matters of challenge in numerical calculations. Therefore, it is the first 

difficulty that the proposed method should overcome. Fig. 2a shows the resultant scattering field 

due to a square cylinder, whose geometry is given in the figure caption. Relation (30) suggests 
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where max
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investigate the behavior of the methods for higher frequencies, the simulation results are provided at 
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where exact
zE  is the scattered field in form of a vector obtained at different points by COMSOL as the 
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the computational complexity and the operations are needed to obtain the field outside the embedding  

(a) (b) 
Fig. 2. Computed by COMSOL, 1Dfft-MoM and 2Dfft-MoM, the scattered fields of a square cylinder at a) 1200 MHz with 
∆��� ∆��� 16 mm and b) 6000 MHz with ∆��� 2 mm .  ∆��� 3 mm. The sides of the square in  and directions are 

125 mm and it has and the fields are obtained on a circle with diameter  of 375 mm. 

Fig. 2.  Computed by COMSOL, 1Dfft-MoM and 2Dfft-MoM, the scattered fields of a square cylinder at a) 
1200 MHz  with ∆∆1D = ∆∆2D = 16 mm and b) 6000 MHz with ∆∆1D = 2 mm . ∆∆2D = 3 mm. The sides of the square in x 
and y directions are 125 mm and it has εεr = 2.56 and the fields are obtained on a circle with diameter  of 375 mm12                                                               Method-of-Moments Solution for 2-Dimensional TM Electromagnetic Problems 
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IteN ) algorithms  

may be different in terms of stopping rule (29). The efficiency gain, according to (4) and (26), is, 

approximately, computed from 

2D 1D
eff Ite 2 Ite 24 log (4 ) log ( )x y x yG N M N M N N M N Nρ ϕ ϕ≈                                                                   (32) 

It should be noted that due to symmetric nature of the objects in Subsections A and B, the scattering 

fields in figures 2, 3, 4 and 5 are sketched in interval [0 180] degrees for more clarification and 

distinguishment between the performances of 1Dfft-MoM and 2Dfft-MoM methods. 

 

A. Homogeneous Square Cylinders  

Sharp edges are always the matters of challenge in numerical calculations. Therefore, it is the first 

difficulty that the proposed method should overcome. Fig. 2a shows the resultant scattering field due to 

a square cylinder, whose geometry is given in the figure caption. Relation (30) suggests ∆ = 15.6 mm  

at 1200 MHz; we chose 16 mm for the discretization widths for both 1Dfft-MoM �∆��� and for 2Dfft-

MoM �∆��� at 1200 MHz. Although it is, relatively, hard to observe, the results of 1Dfft-MoM match 

better to COMSOL data in Fig. 2a. In order to judge undoubtedly the performance of the both methods, 

we should provide the performance parameters. They are the number of cells, 1
cell

DN M Nρ ϕ=  and

2
cell

D
x yN M N= , the relative error defined in (31), 1D

re , 2D
re and the efficiency gain effG for 1Dfft-

MoM and 2Dfft-MoM respectively. For Fig2a, they are: 

1200MHzf = : 1 2448, 324D D
cell cellN N= = , 1 20.0161 , 0.0313D D

r re e= =  , 0.76effG =                                                                 

 

(a) (b) 
Fig. 3. Illustration of the performance of 1Dfft-MoM and 2Dfft-MoM for a bigger square cylinder at a) 1200 
MHz with ∆��� ∆��� 16 mm and b) 6000 MHz with ∆��� 1 mm .  ∆��� 2 mm . The sides of the square in 

 and directions are 250 mm and the fields are obtained on a circle with diameter of 750 mm. 

Fig. 3.  Illustration of the performance of 1Dfft-MoM and 2Dfft-MoM for a bigger squarecylinder at a)  
1200 MHz with ∆∆1D = ∆∆2D = 16 mm and b) 6000 MHz with ∆∆1D = 1 mm . ∆∆2D = 2 mm. The sides of the square in x 

and y directions are 250 mm and the fields are obtained on a circle with diameter of 750 mm

∆  = 15.6 mm at 1200 MHz; we chose 16 mm for the discretization widths for both 1Dfft-MoM  
(∆1D) and for 2Dfft-MoM (∆2D) at 1200 MHz. Although it is, relatively, hard to observe, the results 

of 1Dfft-MoM match better to COMSOL data in Fig. 2a. In order to judge undoubtedly the 

performance of the both methods, we should provide the performance parameters. They are the 

number of cells, 1
cell

DN M Nρ ϕ=  and 2
cell

D
x yN M N= , the relative error defined in (31), 1D

re , 2D
re

and the efficiency gain effG for 1Dfft-MoM and 2Dfft-MoM respectively. For Fig2a, they are:

1200MHzf = : 1 2448, 324D D
cell cellN N= = , 1 20.0161 , 0.0313D D

r re e= = , 0.76effG =

The accuracy of 1Dfft-MoM is twice of that for 2Dfft-MoM; however, there is no improvement 

in the efficiency. This is because for relatively small objects and large ∆, the number of cells 
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The accuracy of 1Dfft-MoM is twice of that for 2Dfft-MoM; however, there is no improvement in the 

efficiency. This is because for relatively small objects and large ∆, the number of cells in both x ( )xM  

and y ( )yN directions are reduced for 2D case, whereas M ρ  is only decreased for 1D case. 

Consequently, 2
cell

DN is reduced more than 1
cell

DN  and effG is degraded with respect to (32). 

For 6000 MHz, relation (30) suggests ∆ = 3.1 mm and hence, we set  ∆��� 2 mm ,  ∆��� 3 mm and 

apply 1Dfft-MoM and 2Dfft-MoM for the same square cylinder. Fig. 2b illustrates the scattered fields, 

for which the performance parameters are: 

6000MHzf = : 1 25888, 8100D D
cell cellN N= = , 1 20.0223 , 0.0365D D

r re e= =  , 1.98effG =  

It is observed that both accuracy and efficiently of 1Dfft-MoM are improved over those of 2Dfft-MoM.   

We, also, compute the scattered field for another square cylinder, whose dimensions are twice the 

previous one. Fig. 3 illustrates the resultant fields and the performance parameters at 1200 MHz are 

1200MHzf = : 1 2832, 1444D D
cell cellN N= = , 1 20.0200 , 0.0620D D

r re e= =  , 2.31effG =  

and at 6000 MHz are 

6000MHzf = : 1 222784, 66564D D
cell cellN N= = , 1 20.0849 , 0.0917D D

r re e= =  , 4.59effG =  

Because the object is bigger making 1D 2D
cell cellN N< , 1Dfft-MoM presents not only less relative error but 

also superior efficiency over 2Dfft-MoM. It should be noted that 1Dfft-MoM needs less storage as well. 

B. Two-Layer Circular Cylinders  

To further compare the two methods, we examine scattering from two circular cylinders with two  

(a) (b) 
Fig. 4. The scattered fields of a 2-layer cylinder at a) 1200 MHz with ∆��� ∆��� 14 mm and b) 6000 MHz 
with ∆��� 2 mm .  ∆��� 3 mm . The relative permittivity and diameter of the inner cylinder are 1.5 and 100 
mm and those of the outer one are 3 and 200 mm. The fields are computed on a circle with 500 mm diameter. 

Fig. 4.  The scattered fields of a 2-layer cylinder at a) 1200 MHz with ∆∆1D = ∆∆2D = 14 mm and b) 6000 MHz with 
∆∆1D = 2 mm . ∆∆2D = 3 mm. The relative permittivity and diameter of the inner cylinder are 1.5 and 100 mm and 

those of the outer one are 3 and 200 mm. The fields are computed on a circle with 500 mm diameter

in both x ( )xM  and y ( )yN directions are reduced for 2D case, whereas M ρ  is only decreased 

for 1D case. Consequently, 2
cell

DN is reduced more than 1
cell

DN  and effG is degraded with respect to 

(32).

For 6000 MHz, relation (30) suggests ∆ = 3.1 mm and hence, we set  ∆1D = 2 mm , ∆2D = 3 mm 

and apply 1Dfft-MoM and 2Dfft-MoM for the same square cylinder. Fig. 2b illustrates the 

scattered fields, for which the performance parameters are:

6000MHzf = : 1 25888, 8100D D
cell cellN N= = , 1 20.0223 , 0.0365D D

r re e= = , 1.98effG =

It is observed that both accuracy and efficiently of 1Dfft-MoM are improved over those of 

2Dfft-MoM.  

We, also, compute the scattered field for another square cylinder, whose dimensions are twice 

the previous one. Fig. 3 illustrates the resultant fields and the performance parameters at 1200 

MHz are

1200MHzf = : 1 2832, 1444D D
cell cellN N= = , 1 20.0200 , 0.0620D D

r re e= = , 2.31effG =

and at 6000 MHz are

6000MHzf = : 1 222784, 66564D D
cell cellN N= = , 1 20.0849 , 0.0917D D

r re e= = , 4.59effG =

Because the object is bigger making 1D 2D
cell cellN N< , 1Dfft-MoM presents not only less relative 

error but also superior efficiency over 2Dfft-MoM. It should be noted that 1Dfft-MoM needs less 

storage as well.

B.  TWO-LAYER CIRCULAR CYLINDERS 

To further compare the two methods, we examine scattering from two circular cylinders with two 
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layers in the radial direction. The results of the first one that has relatively low permittivity contrast 

with the background medium (air) and large dimensions are indicated in Fig. 4. This example gives the 

following performance parameters : 

1200MHzf = : 1 2640, 1444D D
cell cellN N= = , 1 20.0162, 0.0182D D

r re e= =  , 2.83effG =  

6000MHzf = : 1 26656, 20164D D
cell cellN N= = , 1 20.0536, 0.1218D D

r re e= =  , 3.00effG =  

For this particular geometry, the 1Dfft-MoM requires less storage and computational cost. Additionally, 

its results agree favorably with the exact solution, while the 2Dfft-MoM solution shows some errors. 

 We investigate the behavior of the both methods for another 2-layer circular cylinder, having higher 

(a (b

(c

Fig. 5. Performance of 1Dfft-MoM and 2Dfft-MoM for a 2-layer cylinder with high permittivity 
contrast at a) 1200 MHz with ∆��� 2 �� . ∆��� 3 mm and b) 6000 MHz with ∆���  ∆���
0,7 mm . Inner cylinder diameter is 25 mm with  and that of the outer one is 75 mm with 

 and the scattered fields are obtained on a circle with 225 mm diameter. c) The curve of 
residual error in terms of the number of iterations for 6000 MHz frequency. 

Fig. 5.  Performance of 1Dfft-MoM and 2Dfft-MoM for a 2-layer cylinder with high permittivity 
contrast at a) 1200 MHz with ∆∆1D = 2 mm . ∆∆2D = 3 mm and b) 6000 MHz with ∆∆1D = ∆∆2D = 0.7 mm. 

Inner cylinder diameter is 25 mm with εεr = 8 and that of the outer one is 75 mm with εεr = 45 and the 
scattered fields are obtained on a circle with 225 mm diameter. c) The curve of residual error in 

terms of the number of iterations for 6000 MHz frequency

layers in the radial direction. The results of the first one that has relatively low permittivity 

contrast with the background medium (air) and large dimensions are indicated in Fig. 4. This 

example gives the following performance parameters:

1200MHzf = : 1 2640, 1444D D
cell cellN N= = , 1 20.0162, 0.0182D D

r re e= = , 2.83effG =

6000MHzf = : 1 26656, 20164D D
cell cellN N= = , 1 20.0536, 0.1218D D

r re e= = , 3.00effG =

For this particular geometry, the 1Dfft-MoM requires less storage and computational cost. 

Additionally, its results agree favorably with the exact solution, while the 2Dfft-MoM solution 

shows some errors.



Vol. 12  |  No. 1  |  Jan.-Jun. 2023

jc
e.

sh
a

h
e

d
.a

c.
ir

61

Journal of 
Communication 

Engineering (JCE)

We investigate the behavior of the both methods for another 2-layer circular cylinder, having 

higher permittivities, i.e. εr = 8 and εr = 45 for the inner and outer cylinders respectively. Fig. 5a 

and Fig. 5b show the scattered fields for 1200 MHz and 6000 MHz frequencies respectively. 

The resultant fields of 1200 MHz fits pretty good that of COMSOL with the corresponding 

performance parameters as

1200MHzf = : 1 21344, 3364D D
cell cellN N= = , 1 20.0210, 0.0238D D

r re e= = , 3.44effG =

Nevertheless, the fitness of the scattered fields to the actual one is not satisfactory at 6000 

MHz, though we set ∆ = 0.7 mm according to relation (30). The change of the relative residual 

error Err = 45 defined in relation (29) is depicted in Fig. 5c so as to find out whether BCGS-FFT 

converges. As it can be seen, 

BCGS-FFT fails to converge for 2Dfft-MoM and the algorithm ends to division by zero before 

500 iterations. BCGS-FFT converges for 1Dfft-MoM; but, the residual error cannot reach -80 dB, 

i.e. less than 10-4 as specified in (29). Also, BCGS-FFT behaves erratically and the residual error 

in some iterations is increased. Reporting in [31], such an erratic behavior is due to unsuitable 

selection of both initial residual error and shadow residual error that together with numerical 

round of error cause BCGS-FFT fails to converge. Among simple suggestion given in [31] to 

alleviate this pitfall is to select the intermediate solution for the scattered field with the minimum 

residual error in the process of BCGS-FFT algorithm. We realize this suggestion and calculate 

the performance parameters at the intermediate-optimum iteration. Doing so, the performance 

parameters for Fig. 5b are

6000MHzf = : 1 27168, 49284D D
cell cellN N= = , 1 20.0747, 0.1573D D

r re e= =  , 1.04effG =

Microwave imaging of biological tissue is an important application of scattering from 

inhomogeneous objects. In light of this, we consider a simple model of a human arm shown in 

Fig. 6, in which the performance parameters at 1200 MHz for Fig. 6a is given by

1200MHzf = : 1 2960, 529D D
cell cellN N= = , 1 20.0366, 0.0475D D

r re e= =  , 2.71effG =

For 6000 MHz frequency, the scattered fields and the curve of residual error are shown in Fig. 

6b and Fig. 6c respectively. It can be seen BCGS-FFT becomes unstable after 20000 iterations 

for 2Dfft-MoM.

Using outputs of the two methods at the intermediate-optimum iterations 
1D 2D
opt opt24228, 14934NItr NItr= = , Fig. 6b indicates the scattered field with the performance parameters 

as:

6000MHzf = : 1 224320, 143641D D
cell cellN N= = , 1 20.0539, 0.1070D D

r re e= = , 27.84effG =
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Returning to the comparison of 1Dfft-MoM and 2Dfft-MoM, one can conclude from Fig. 5 and the 

above parameters, achieved at the intermediate-optimum iterations of 1D 2D
opt opt3774, 366NItr NItr= = , that 

1Dfft-MoM performs better. 

C. Arm Model  

 

 

 

 

 

 

 

 

 

 

 
Table 1: The parameters, accuracy and efficiency of 1Dfft-MoM and 2Dfft-MoM for different examples,  

whose scattered fields are illustrated in the aforementioned figures. 
 

Frequency 
1200 MHz ( 64)N ϕ =  6000 MHz ( 128)N ϕ =  

Fig.2a Fig.3a Fig.4a Fig.5a Fig.6a Fig.2b Fig.3b Fig.4b Fig.5b Fig.6b 

1DΔ (mm) 16 16 14 2 3 2 1 2 0.7 0.2 

2DΔ (mm) 16 16 14 3 4 3 2 3 0.7 0.2 

1D
re  0.0161 0.0200 0.0162 0.0210 0.0366 0.0223 0.0849 0.0536 0.0747 0.0539 

2D
re  0.0313 0.0620 0.0182 0.0238 0.0475 0.0365 0.0917 0.1218 0.1573 0.1070 

1
cell

DN  448 832 640 1344 960 5888 22784 6656 7168 24320 

2
cell

DN  324 1444 1444 3364 529 8100 66564 20164 49284 143641 

effG  0.76 2.31 2.83 3.44 2.71 1.98 4.59 3.00 1.04 27.84 

(a) (b) 

(c) 

Fig. 6. The scattered fields of an arm model with  for bones and  for muscle at (a) 1200 MHz with ∆���
3 �� . ∆��� 4 mm and (b) 6000 MHz with ∆���  ∆��� 0,2 mm. The fields are obtained on a circle with diameter of 135 

mm. (c) The curve of residual error in terms of the number of iterations for 6000 MHz frequency. 

Fig. 6.  The scattered fields of an arm model with εεr = 8 for bones and εεr = 45 for muscle at (a) 1200 MHz with  
∆∆1D = 3 mm . ∆∆2D = 4 mm and (b) 6000 MHz with ∆∆1D = ∆∆2D = 0.2 mm. The fields are obtained on a circle with 

diameter of 135 mm. (c) The curve of residual error in terms of the number of iterations for 6000 MHz frequency

For this nonsymmetrical object, 1Dfft-MoM outperforms 2Dfft-MoM and presents little 

deviation from COMSOL data.

The quantitative parameters for Fig. 2, 3, 4, 5 and 6 are summarized in Table 1 for easy 

comparison. One can see that the accuracy and the computational efficiency of the 1Dfft-MoM 

are superior over 

Returning to the comparison of 1Dfft-MoM and 2Dfft-MoM, one can conclude from Fig. 5 and 

the above parameters, achieved at the intermediate-optimum iterations of 1D 2D
opt opt3774, 366NItr NItr= = , 

that 1Dfft-MoM performs better.

C.  ARM MODEL 

2Dfft-MoM for all three structures. Specially, for a realistic model of arm, the 1Dfft-MoM meets 

nearly half error of 2Dfft-MoM and exhibits higher computational efficiency.
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Table 1.  The parameters, accuracy and efficiency of 1Dfft-MoM and 2Dfft-MoM for different examples,  
whose scattered fields are illustrated in the aforementioned figures

Frequency
1200 MHz (Nφ = 64) 6000 MHz (Nφ = 128) 

Fig.2a Fig.3a Fig.4a Fig.5a Fig.6a Fig.2b Fig.3b Fig.4b Fig.5b Fig.6b

∆1D(mm) 16 16 14 2 3 2 1 2 0.7 0.2

∆2D(mm) 16 16 14 3 4 3 2 3 0.7 0.2
1D
re 0.0161 0.0200 0.0162 0.0210 0.0366 0.0223 0.0849 0.0536 0.0747 0.0539
2D
re 0.0313 0.0620 0.0182 0.0238 0.0475 0.0365 0.0917 0.1218 0.1573 0.1070

1
cell

DN 448 832 640 1344 960 5888 22784 6656 7168 24320

2
cell

DN 324 1444 1444 3364 529 8100 66564 20164 49284 143641

effG 0.76 2.31 2.83 3.44 2.71 1.98 4.59 3.00 1.04 27.84

V.  DISCUSSION AND CONCLUSION

This paper formulates 2D TM problems within the framework of the method of moment (MoM) 

in polar coordinates utilizing special form of Green’s function. The novel formulation allows 

the matrix-vector product (MVP) is computed by 1-D FFT in polar MoM (1Dfft-MoM method), 

whereas the MVP is computed by 2-D FFT in cartesian MoM (2Dfft-MoM method). Such an 

approach has two advantages: 1) no need for expanding embedding region by zero padding, 

whereas conventional 2Dfft-MoM method needs such an expansion. This results in the reduction 

of memory and computational cost, while the accuracy is preserved. 2) Because the scattered 

field out of the object region is calculated analytically, our approach improves the efficiency in 

electromagnetic inverse scattering problems and microwave imaging, where the field is required 

to be evaluated at some measurement points outside an object under test.

The numerical examples indicate the 1Dfft-MoM enhances the accuracy, storage use and 

computational efficiency. In special cases when the size of scattering objects is small and 

comparable with the wavelength, 1Dfft-MoM needs more storage and could pose less efficiency 

than the 2Dfft-MoM. 

We have used BCGS to solve the set of linear equations arises in MoM for both 1Dfft-MoM and 

2Dfft-MoM. The number of linear equations (i.e. number of discretized cells) in electromagnetic 

problems gets large when the dimension of the scattering object is large relative to the shortest 

wavelength. Our numerical results show that BCGS can fail to converge and becomes unstable 

for 2D TM problems if the number of cells is large and/or some initial parameters in BCGS are 

chosen improper. 

Authors in [31] have addressed the BCGS drawbacks (i.e. its instability and divergency) 
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and provided some remedies. We have employed a remedy from [31], in which the output is an 

intermediate solution for the scattered field with the minimum residual error in the process of 

BCGS-FFT algorithm. However, the best remedy suggested in [31] is to use induced dimension 

reduction (IDR) method instead of BCGS. The use of IDR in MoM to solve 2D TM problems 

together with developing MoM for 2D TE problems in polar coordinates will be left for the future 

work.

APPENDEX A

As 0ρ →  and n → ∞ , the integrands of (19) and (23) become such diminutive or enormous that 

they are out of numerical computation range. To deal with this, asymptotic expansions can be 

implemented as
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The zeroth and first order integrands of (19), (20) and (23) can be calculated using (A3).
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The Struve functions of the zeroth 0H  and first 1H orders are given by [25]
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