Wide Band Nonuniform Substrate Integrated Waveguide (NSIW) Wilkinson Power Divider



A new wideband Wilkinson Power Divider which use the nonuniform substrate integrated waveguide (NSIW) method is presented in this paper. This structure utilizes NSIWs instead of the uniform quarter wavelength SIWs in conventional Wilkinson power divider. The proposed structure is analyzed by odd and even mode analysis. The proper NSIW section widths can be extracted by using even mode while the divider resistances are achieved by odd mode analysis. Moreover using of half mode structure in the NSIW and two output ports reduces the overall size of the proposed divider. Finally a wideband Wilkinson power divider is designed and simulated to verify the proposed design method. A good return loss (S11, S22) and insertion loss (S21) across a very wideband width from 10 GHz to 20 GHz is achieved. Also, the isolation (S23) is better than -10 dB from 9.5 GHz to 21.5 GHz for the designed NSIW divider.