TLS Noise Reduction and Sensitivity Improvement of the Microwave Kinetic Inductance Detectors

Document Type : Research Paper


Electrical & Electronic Engineering Dept., Shahed University, Persian Gulf Highway, Tehran, Iran


In this paper, we report the sensitivity of superconducting detector resonators and shows which kind of detector is appropriate for detecting cosmic microwave background (CMB). Photons absorbed from galaxies have information about dark matter and dark energy and we need advanced technology to observe cosmic rays. Microwave kinetic inductance detectors (MKIDs) can be used to enjoy an array of thousands of pixels, and a small size design. Sensitive MKIDs with little quantity of noise equivalent power (NEP) could detect photons that have very low energy but intrinsic noise particularly TLS noise. How to design an MKID based on decreasing TLS noise is discussed here. This transmission line resonator was designed with an open circuit lambda second waveguide. This MKID has a reliable quality factor in 6 GHz frequency. An array that includes 8 MKIDs has been designed. The responses which were taken prove that the sensitivity of these MKIDs compare to former MKIDs is slightly more valid.


[1] P. de Bernardis, , P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble, B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L. Martinis, S. Masi, P. V. Mason, P. D. Mauskopf, A. Melchiorri, L. Miglio, T. Montroy, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, S. Prunet, S. Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna, and N. Vittorio, “A flat universe from high-resolution maps of the cosmic microwave background radiation,” Nature 404, no 6781, pp. 955–959, 2000.
[2] J. Glenn, J. J. Bock, G. Chattopadhyay, S. F. Edgington, A. E. Lange, J. Zmuidzinas, P. D. Mauskopf, B. Rownd, L. Yuen, and P. A. R. Ade, “Bolocam: a millimeter-wave bolometric camera,” SPIE–the International Society of Optical Engineering, vol. 3357, pp. 326– 334, 1998.
[3] K. D. Irwin, G. C. Hilton, D. A. Wollman, and J. M. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback,” Applied Physics Letters 69 , no. 13, pp. 1945–1947, 1996.
[4] K. D. Irwin and G. C. Hilton, “Cryogenic particle detection,” Topics in Applied Physics, vol. 99, pp. 63–149. Springer, Berlin, Germany, 2005.
[5] D. Twerenbold, “Giaever-type superconducting tunneling junctions as high-resolution X-ray-detectors,” Europhysics Letters 1, no. 5, pp. 209–214, 1986.
[6] P.Eacock, , P. Verhoeve, N. Rando, A. vanDordrecht, B. Taylor, C. Erd, M. Perryman, R. Venn, J. Howlett, D. Goldie, J. Lumley, and M. Wallis, “Single optical photon detection with a superconducting tunnel junction,” Nature 381 , no. 6578, pp. 135–137, 1996.
[7] P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425, no. 6960, pp. 817–821, 2003.
[8] P. K. Day, H. G. Leduc, A. Goldin, T. Vayonakis, B. A. Mazin, S. Kumar, J. Gao, and J. Zmuidzinas, “Antenna-coupled microwave kinetic inductance detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 559, pp. 561– 563, 2006.
[9] S. McHugh, B. A. Mazin, B. Serfass, S. Meeker, K. O'Brien, R. Duan, R. Ra_anti, and D. Werthimer, “A readout for large arrays of microwave kinetic inductance detectors," Review of Scienti_c Instruments, vol. 83, no. 4, p.702, 2012.
[10]M. Heidari, and S.M.H Javadzadeh. "Analyzing and modeling of an ultra-compact superconducting resonator for kinetic inductance detectors applications," Physica C. Superconductivity and its Applications vol. 592, pp.1353987, 2022.
[11] J. Gao, M. Daal, J. M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc,“A semiempirical model for two-level system noise in superconducting micro resonators,” Applied Physics Letters, vol. 92, no. 21, May 2008.
[12] W. A. Phillips,” Journal of Low Temperature Physics,”Tunneling states in amorphous solids, vol. 7, pp. 351, 2002.
[13] J. Martinis, K. Cooper, R. McDermott, M. Ste_en, M. Ansmann, K. Osborn, K. Cicak, S. Oh, D. Pappas, R. Simmonds, and C. Yu, “Decoherence in Josephson qubits from dielectric loss,”Physical Review Letters, vol. 95, no. 21, Nov 2005.
[14] D. P. Pappas, M. R. Vissers, D. S. Wisbey, J. S. Kline, and J. Gao, “Two Level System Loss in Superconducting Microwave Resonators,”IEEE Trans. Applied Superconductivity, vol. 21, no. 3, part 1, p. 871, June 2011.
[15] W. A. Phillips, “Two-level states in glasses,” Reports on Progress in Physics, vol. 50, no. 12, pp. 1657, 1987.
[16] J. Gao, “The physics of superconducting microwave resonators,” Ph.D. dissertation, California Institute of Technology, 2008.
[17] G. Kozorezov, A. F. Volkov, J. K. Wigmore, A. Peacock, A. Poelaert, and R. den Hartog, “Quasiparticle–phonon downconversion in nonequilibrium superconductors,” Phys. Rev. B, vol. 61, pp. 11807–11819, May 2000.
[18] J. A. Schlaerth, N. G. Czakon, P. K. Day, T. P. Downes, R. Duan, J. Gao, J. Glenn, S. R. Golwala, M. I. Hollister, H. G. LeDuc, B. A. Mazin, P. R. Maloney, O. Noroozian, H. T. Nguyen, J. Sayers, S. Siegel, J. E. Vaillancourt, A. Vayonakis, P. R. Wilson, and J. Zmuidzinas, “MKID multicolor array status and results from DemoCamin Millemeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy,” The International Society for Optical Engineering, vol. 7741, 2010.
[19] J. Zmuidzinas, “Superconducting micro resonators,” Physics and applications, Annual Review of Condensed Matter Physics, vol.3, no.1, pp.169-214,2012.
[20] S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, “Quasiparticle and phonon lifetimes in superconductors,” Phys.Rev. B, vol.14, pp. 4854-4873, Dec.1976.
[21] J. Gao, “The Physics of Superconducting Microwave Resonators," Ph.D. dissertation, California Institute of Technology, pp. 51-52, 2008.
[22] O. Noroozian, “Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging,” Ph.D. dissertation, California Institute of Technology, pp. 65-69, 2012.
[23] O. Noroozian, “Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging,” Ph.D. dissertation, California Institute of Technology, pp. 79-82, 2012.
[24] R. Barends, “Photon-detecting superconducting resonators," Ph.D. dissertation, Technische Universiteit Delft, pp. 75-85, 2009.
[25] O. Noroozian, “Superconducting microwave resonator arrays for submillimeter/far-infrared imaging. PhD dissertation,” California Institute of Technology, pp. 28-37, 2012.
[26] O. Noroozian, “Superconducting microwave resonator arrays for submillimeter/far-infrared imaging. PhD dissertation,” California Institute of Technology, pp. 59-87, 2012.
[27] Benjamin A. Mazin, “Microwave Kinetic Inductance Detectors,” PhD dissertation,” California Institute of Technology, pp. 36-56, 2004.
[28] David Craig Moore, “A Search for Low-Mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon-Mediated Particle Detectors” PhD dissertation,” California Institute of Technology, pp. 180-215, 2012.
[29] Morteza Heidari and S. Mohammad Hassan Javadzadeh, “Ultra High Q-Factor Superconducting Microresonator to Use in Microwave Kinetic Inductance Detectors,” 27th Iranian Conference on Electrical Engineering (ICEE2019).