[1] P. de Bernardis, , P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble, B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L. Martinis, S. Masi, P. V. Mason, P. D. Mauskopf, A. Melchiorri, L. Miglio, T. Montroy, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, S. Prunet, S. Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna, and N. Vittorio, “A flat universe from high-resolution maps of the cosmic microwave background radiation,” Nature 404, no 6781, pp. 955–959, 2000.
[2] J. Glenn, J. J. Bock, G. Chattopadhyay, S. F. Edgington, A. E. Lange, J. Zmuidzinas, P. D. Mauskopf, B. Rownd, L. Yuen, and P. A. R. Ade, “Bolocam: a millimeter-wave bolometric camera,” SPIE–the International Society of Optical Engineering, vol. 3357, pp. 326– 334, 1998.
[3] K. D. Irwin, G. C. Hilton, D. A. Wollman, and J. M. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback,” Applied Physics Letters 69 , no. 13, pp. 1945–1947, 1996.
[4] K. D. Irwin and G. C. Hilton, “Cryogenic particle detection,” Topics in Applied Physics, vol. 99, pp. 63–149. Springer, Berlin, Germany, 2005.
[5] D. Twerenbold, “Giaever-type superconducting tunneling junctions as high-resolution X-ray-detectors,” Europhysics Letters 1, no. 5, pp. 209–214, 1986.
[6] P.Eacock, , P. Verhoeve, N. Rando, A. vanDordrecht, B. Taylor, C. Erd, M. Perryman, R. Venn, J. Howlett, D. Goldie, J. Lumley, and M. Wallis, “Single optical photon detection with a superconducting tunnel junction,” Nature 381 , no. 6578, pp. 135–137, 1996.
[7] P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425, no. 6960, pp. 817–821, 2003.
[8] P. K. Day, H. G. Leduc, A. Goldin, T. Vayonakis, B. A. Mazin, S. Kumar, J. Gao, and J. Zmuidzinas, “Antenna-coupled microwave kinetic inductance detectors,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 559, pp. 561– 563, 2006.
[9] S. McHugh, B. A. Mazin, B. Serfass, S. Meeker, K. O'Brien, R. Duan, R. Ra_anti, and D. Werthimer, “A readout for large arrays of microwave kinetic inductance detectors," Review of Scienti_c Instruments, vol. 83, no. 4, p.702, 2012.
[10]M. Heidari, and S.M.H Javadzadeh. "Analyzing and modeling of an ultra-compact superconducting resonator for kinetic inductance detectors applications," Physica C. Superconductivity and its Applications vol. 592, pp.1353987, 2022.
[11] J. Gao, M. Daal, J. M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc,“A semiempirical model for two-level system noise in superconducting micro resonators,” Applied Physics Letters, vol. 92, no. 21, May 2008.
[12] W. A. Phillips,” Journal of Low Temperature Physics,”Tunneling states in amorphous solids, vol. 7, pp. 351, 2002.
[13] J. Martinis, K. Cooper, R. McDermott, M. Ste_en, M. Ansmann, K. Osborn, K. Cicak, S. Oh, D. Pappas, R. Simmonds, and C. Yu, “Decoherence in Josephson qubits from dielectric loss,”Physical Review Letters, vol. 95, no. 21, Nov 2005.
[14] D. P. Pappas, M. R. Vissers, D. S. Wisbey, J. S. Kline, and J. Gao, “Two Level System Loss in Superconducting Microwave Resonators,”IEEE Trans. Applied Superconductivity, vol. 21, no. 3, part 1, p. 871, June 2011.
[15] W. A. Phillips, “Two-level states in glasses,” Reports on Progress in Physics, vol. 50, no. 12, pp. 1657, 1987.
[16] J. Gao, “The physics of superconducting microwave resonators,” Ph.D. dissertation, California Institute of Technology, 2008.
[17] G. Kozorezov, A. F. Volkov, J. K. Wigmore, A. Peacock, A. Poelaert, and R. den Hartog, “Quasiparticle–phonon downconversion in nonequilibrium superconductors,” Phys. Rev. B, vol. 61, pp. 11807–11819, May 2000.
[18] J. A. Schlaerth, N. G. Czakon, P. K. Day, T. P. Downes, R. Duan, J. Gao, J. Glenn, S. R. Golwala, M. I. Hollister, H. G. LeDuc, B. A. Mazin, P. R. Maloney, O. Noroozian, H. T. Nguyen, J. Sayers, S. Siegel, J. E. Vaillancourt, A. Vayonakis, P. R. Wilson, and J. Zmuidzinas, “MKID multicolor array status and results from DemoCamin Millemeter, Submillimeter, and Far-infrared Detectors and Instrumentation for Astronomy,” The International Society for Optical Engineering, vol. 7741, 2010.
[19] J. Zmuidzinas, “Superconducting micro resonators,” Physics and applications, Annual Review of Condensed Matter Physics, vol.3, no.1, pp.169-214,2012.
[20] S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, “Quasiparticle and phonon lifetimes in superconductors,” Phys.Rev. B, vol.14, pp. 4854-4873, Dec.1976.
[21] J. Gao, “The Physics of Superconducting Microwave Resonators," Ph.D. dissertation, California Institute of Technology, pp. 51-52, 2008.
[22] O. Noroozian, “Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging,” Ph.D. dissertation, California Institute of Technology, pp. 65-69, 2012.
[23] O. Noroozian, “Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging,” Ph.D. dissertation, California Institute of Technology, pp. 79-82, 2012.
[24] R. Barends, “Photon-detecting superconducting resonators," Ph.D. dissertation, Technische Universiteit Delft, pp. 75-85, 2009.
[25] O. Noroozian, “Superconducting microwave resonator arrays for submillimeter/far-infrared imaging. PhD dissertation,” California Institute of Technology, pp. 28-37, 2012.
[26] O. Noroozian, “Superconducting microwave resonator arrays for submillimeter/far-infrared imaging. PhD dissertation,” California Institute of Technology, pp. 59-87, 2012.
[27] Benjamin A. Mazin, “Microwave Kinetic Inductance Detectors,” PhD dissertation,” California Institute of Technology, pp. 36-56, 2004.
[28] David Craig Moore, “A Search for Low-Mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon-Mediated Particle Detectors” PhD dissertation,” California Institute of Technology, pp. 180-215, 2012.
[29] Morteza Heidari and S. Mohammad Hassan Javadzadeh, “Ultra High Q-Factor Superconducting Microresonator to Use in Microwave Kinetic Inductance Detectors,” 27th Iranian Conference on Electrical Engineering (ICEE2019).