[1] A. Zahedi, F. Parandin, M. M. Karkhanehchi, H. Habibi Shams, and S. Rajamand “Design and Simulation of Optical 4-Channel Demultiplexer Using Photonic Crystals,” Journal of Optical Communications, vol.2, no.5, pp. 22-25, May 2013.
[2] M. M. Karkhanehchi, F. Parandin, A. Zahedi, “Design of an all optical half-adder based on 2D photonic crystals,” Photonic Network Communications, vol. 33, no. 2, pp. 159-165, April 2017.
[3] F. Parandin, R. Malmir, M. Naseri, and A. Zahedi, "Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals," Superlattices Microstruct., vol.113, no. 2018, pp. 737-744 , January 2018.
[5] A. Ghanbari, A. Kashaninia, A. Sadr, and H. Saghaei, “Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber,” Optik-International J. for Light. Electron Opt., vol. 140, pp. 545-554, July 2017.
[6] H. Saghaei, and A. Ghanbari, “White light generation using photonic crystal fiber with sub-micron circular lattice,” J. Electrical Eng., vol. 68, no. 4, pp. 282-289, August 2017.
[7] H. Saghaei, B. Seyfe, H. Bakhshi, and R. Bayat, “Novel approach to adjust the step size for closed-loop power control in wireless cellular code division multiple access systems under flat fading,” IET Commun., vol. 5, no. 11, pp. 1469-1483, July 2011.
[8] H. Saghaei, and B. Seyfe, “New Approach to Closed-Loop Power Control in Cellular CDMA Systems under Multipath Fading,” Proc. IEEE Wicom’08 Conf., pp. 1-4, 2008,
[9] H. Saghaei, “Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach,” Radioengineering, vol. 26, no. 1, pp. 16-22, March 2017.
[10] M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. N. Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 5, pp. 582-589, March 2014.
[11] H. Saghaei, V. Heidari, M. Ebnali-Heidari, and M. R. Yazdani, “A systematic study of linear and nonlinear properties of photonic crystal fibers,” Optik-International J. for Light. Electron Opt., vol. 127, no. 24, pp. 11938-11947, March 2016.
[12] M. Ebnali-Heidari, F. Dehghan, H. Saghaei, F. Koohi-Kamali, and M. K. Moravvej-Farshi, “Dispersion engineering of photonic crystal fibers by means of fluidic infiltration,” J. Mod. Opt., vol. 59, no. 16, pp. 1384-1390, August 2012.
[13] A. Ghanbari, A. Sadr, and H. Hesari, “Modeling photonic crystal fiber for efficient soliton-effect compression of femtosecond optical pulses at 850 nm,” Arab. J. Sci. Eng., vol. 39, no. 5, pp. 3917-3923, May 2014.
[14] A. Ghanbari, A. Karimkhani nia, and A. Sadr, “Superlattice elliptical-core photonic crystal fiber soliton effect compressor at 1550nm,” Journal of Communication Engineering., vol. 4, no.1, pp. 29-40, January-June 2015.
[15] H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As 40 Se 60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2, pp. 279-286, September 2016.
[16] B. Tan, X.-w. Chen, and S.-C. Li, “Total Internal Reflection Photonic Crystal Fiber,” J. Optoelectronics Laser, vol. 13, no. 5, pp. 491-495, July 2002.
[17] H. Saghaei, A. Zahedi, R. Karimzadeh, and F. Parandin, “Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates,” Superlattices Microstruct., vol. 110, no.7, pp. 133-138, August 2017.
[18] J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 807-809, August 2000.
[19] M. Ebnali-Heidari, H. Saghaei, C. Monat, and C. Grillet, “Four-wave Mixing Based Mid-span Phase Conjugation using slow light engineered Chalcogenide and silicon photonic crystal waveguides,” The European Conference on Lasers and Electro-Optics, pp. CD4_3, May 2011.
[20] J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. S. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express, vol. 13, no. 2, pp. 534-544, July 2005.
[21] H. Saghaei and V. Van, “Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide,” JOSA B, vol. 36, no. 2, pp. 193-202, February 2019.
[22] M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As 38.8 Se 61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt., vol. 56, no. 2, pp. 163-169, January 2017.
[23] H. Saghaei, “Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation,” Appl. Opt., vol. 57, no. 20, pp. 5591-5598, July 2018.
[24] R. Raei, M. Ebnali-Heidari, and H. Saghaei, “Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions,” JOSA B, vol. 35, no. 2, pp. 323-330, Febrarury 2018.
[25] H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As 2 Se 3 chalcogenide photonic crystal fibers,” Appl. Opt., vol. 54, no. 8, pp. 2072-2079, March 2015.
[26] G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μ m in a fluoride fiber,” Appl. Phys. Express, vol. 95, no. 16, pp. 161103, October 2009.
[27] V. R. K. Kumar, A. George, J. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express, vol. 11, no. 20, pp. 2641-2645, November 2003.
[28] B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” JOSA B, vol. 19, no. 10, pp. 2331-2340, August 2002.
[29] T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” JOSA B, vol. 19, no. 10, pp. 2322-2330, July 2002.
[30] F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol., vol. 6, no. 2, pp. 181-191, April 2000.
[31] S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express, vol. 12, no. 15, pp. 3341-3352, July 2004.
[32] Y. Cao, Z. Hou, and Y. Liu, “Convergence problem of plane-wave expansion method for phononic crystals,” Phys. Lett. A, vol. 327, no. 2, pp. 247-253, June 2004.
[33] M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett., vol. 81, no. 7, pp. 1163-1165, June 2002.
[34] R. Sinha, and A. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron., vol. 37, no. 8, pp. 711-722, June 2005.
[35] K. Saitoh, and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express, vol. 13, no. 1, pp. 267-274, January 2005.
[36] M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express, vol. 12, no. 8, pp. 1775-1779, May 2004.
[37] S. Bandyopadhyay, P. Biswas, A. Pal, S. K. Bhadra, and K. Dasgupta, “Empirical relations for design of linear edge filters using apodized linearly chirped fiber Bragg grating,” J. Lightwave Technol., vol. 26, no. 24, pp. 3853-3859, Dec. 2008.