[1] W. Jutzi, “Microwave bandwidth active transversal filter concept with MESFETs,” IEEE Trans. Microwave Theory and Techniques, vol. 19, no. 9, pp. 760-767, Sept. 1971.
[2] Gye-An Lee, H. Ko, and F. De Flaviis. “Advanced design of broadband distributed amplifier using a SiGe BiCMOS technology,” IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 1, pp. A189-192, June 2003.
[3] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh, and Y.-C. Wang, “Design and analysis of a DC–43.5 GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 2, pp. 443-455, Feb. 2011.
[4] J.-C. Chien, T-Y. Chen, and L.-H. Lu, “A 9.5-dB 50-GHz Matrix Distributed Amplifier in 0.18-/spl mu/m CMOS,” 2006 Symposium on VLSI Circuits, 2006, Digest of Technical Papers., pp. 146-147, June 2006.
[5] J.-C. Chien and L.-H. Lu, “40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2715-2725, Dec. 2007.
[6] B. Razavi, Design of analog CMOS integrated circuits, Tata McGraw-Hill Education, 2002.
[7] M. Mohammad-Taheri, “Self-equalized distributed amplifier for wide band optical transceivers,” International Journal of Engineering-Transactions A: Basics, vol. 17, no. 3, pp. 263-269, Sept. 2004.
[8] D. Jiangfeng, P. Xu, K. Wang, C. Yin, Y. Liu, Z. Feng, S. Dun, and Q. Yu, “Small signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitance,” Journal of semiconductors, vol. 36, no. 3, July 2015.
[9] B. Razavi, “Prospects of CMOS technology for high-speed optical communication circuits,” IEEE Journal of Solid-State Circuits, vol. 37, no. 9, pp. 1135-1145, pp. 034009 (1-4), Sept. 2002.
[10] J. Sewter and A. C. Carusone. “A 40 Gb/s transversal filter in 0.18/spl mu/m CMOS using distributed amplifiers,” Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, pp. 417-420, Sept. 2005.